學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級(jí)數(shù)學(xué)>

九年級(jí)數(shù)學(xué)上期末質(zhì)量檢測(cè)

時(shí)間: 妙純901 分享

  一份耕耘,一份收獲,上蒼從來不會(huì)忘記努力學(xué)習(xí)的人!盡量去考,因?yàn)樘斓莱昵凇4竽懭タ?,沒必要杞人憂天患得患失,天生我才必有用!祝九年級(jí)數(shù)學(xué)期末考試時(shí)超常發(fā)揮!以下是學(xué)習(xí)啦小編為大家整理的九年級(jí)數(shù)學(xué)上期末質(zhì)量檢測(cè),希望你們喜歡。

  九年級(jí)數(shù)學(xué)上期末質(zhì)量檢測(cè)題

  一、選擇題(每題3分,共45分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是正確的,請(qǐng)把正確的選項(xiàng)填涂在答題卡上)

  1.下列四個(gè)點(diǎn),在反比例函數(shù)y= 圖象上的是(  )

  A.(2,﹣6) B.(8,4) C.(3,﹣4) D.(﹣6,﹣2)

  2.下面方程中,有兩個(gè)不等實(shí)數(shù)根的方程是(  )

  A.x2+x﹣1=0 B.x2﹣x+1=0 C.x2﹣x+ =0 D.x2+1=0

  3.如果兩個(gè)相似多邊形的相似比為1:5,則它們的面積比為(  )

  A.1:25 B.1:5 C.1:2.5 D.1:

  4.下列命題中正確的是(  )

  A.兩條對(duì)角線相等的平行四邊形是矩形

  B.三個(gè)角是直角的多邊形是矩形

  C.兩條對(duì)角線相等的四邊形是矩形

  D.有一個(gè)角是直角的四邊形是矩形

  5.在反比例函數(shù) 的圖象上有兩點(diǎn)(﹣1,y1), ,則y1﹣y2的值是(  )

  A.負(fù)數(shù) B.非正數(shù) C.正數(shù) D.不能確定

  6.在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值為(  )

  A.1 B. C. D.

  7.高4米的旗桿在水平地面上的影長5米,此時(shí)測(cè)得附近一個(gè)建筑物的影子長20米,則該建筑物的高是(  )

  A.16米 B.20米 C.24米 D.30米

  8.下面四個(gè)圖是同一天四個(gè)不同時(shí)刻樹的影子,其時(shí)間由早到晚的順序?yàn)?  )

  A.1234 B.4312 C.3421 D.4231

  9.如圖是由5個(gè)大小相同的正方體組成的幾何體,它的左視圖為(  )

  A. B. C. D.

  10.將拋物線y=x2﹣2x+3向上平移2個(gè)單位長度,再向右平移3個(gè)單位長度后,得到的拋物線的解析式為(  )

  A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6

  11.某校幵展“文明小衛(wèi)士”活動(dòng),從學(xué)生會(huì)“督查部”的3名學(xué)生(2男1女)中隨機(jī)選兩名進(jìn)行督導(dǎo),恰好選中兩名男學(xué)生的概率是(  )

  A. B. C. D.

  12.如圖,點(diǎn)P是▱ABCD邊AB上的一點(diǎn),射線CP交DA的延長線于點(diǎn)E,則圖中相似的三角形有(  )

  A.0對(duì) B.1對(duì) C.2對(duì) D.3對(duì)

  13.在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣4,2),B(﹣6,﹣4),以原點(diǎn)O為位似中心,相似比為 ,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(  )

  A.(﹣2,1) B.(﹣8,4) C.(﹣2,1)或(2,﹣1) D.(﹣8,4)或(8,﹣4)

  14.在同一直角坐標(biāo)系中,一次函數(shù)y=kx﹣k與反比例函數(shù)y= (k≠0)的圖象大致是(  )

  A. B. C. D.

  15.如圖,二次函數(shù)y=ax2+bx+c的圖象的對(duì)稱軸是直線x=1,則下列結(jié)論:

 ?、賏<0,b<0;②a+b+c>0;③a﹣b+c<0;④當(dāng)x>1時(shí),y隨x的增大而減小;

  ⑤b2﹣4ac>0;⑥4a+2b+c>0;⑦a+b>m(am+b)(m≠1).

  其中正確的結(jié)論有(  )

  A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)

  二、填空題(本題共8小題,滿分24分)

  16.二次函數(shù)y=x2+2x的頂點(diǎn)坐標(biāo)為      .

  17.一個(gè)四邊形各邊的中點(diǎn)的連線組成的四邊形為菱形,則原四邊形的特點(diǎn)是      .

  18.關(guān)于x的一元二次方程kx2﹣x+2=0有兩個(gè)實(shí)數(shù)根,則k的取值范圍是      .

  19.二次函數(shù)y=x2+bx﹣2(b為常數(shù))的圖象與x軸有      個(gè)交點(diǎn).

  20.如圖1是小志同學(xué)書桌上的一個(gè)電子相框,將其側(cè)面抽象為如圖2所示的幾何圖形,已知BC=BD=15cm,∠CBD=40°,則點(diǎn)B到CD的距離為      cm(參考數(shù)據(jù)sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).

  21.將矩形紙片ABCD,按如圖所示的方式折疊,點(diǎn)A、點(diǎn)C恰好落在對(duì)角線BD上,得到菱形BEDF.若BC=6,則AB的長為      .

  22.如圖,某公園入口處原有三級(jí)臺(tái)階,每級(jí)臺(tái)階高為18cm,深為30cm,為方便殘疾人士,擬將臺(tái)階改為斜坡,設(shè)臺(tái)階的起點(diǎn)為A,斜坡的起始點(diǎn)為C,現(xiàn)設(shè)計(jì)斜坡BC的坡度i=1:5,則AC的長度是      cm.

  23.如圖,點(diǎn)A在雙曲線 上,點(diǎn)B在雙曲線y= 上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為      .

  三、解答題(共7小題,滿分51分,解答應(yīng)寫出文字說明、證明過程或演算步驟,請(qǐng)?jiān)诖痤}紙上作答)

  24.計(jì)算:20160﹣3tan30°+(﹣ )﹣2﹣| ﹣2|

  25.某超市計(jì)劃在“十周年”慶典開展購物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元和小于6時(shí)不返現(xiàn)金.

  (1)試用樹狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;

  (2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?

  26.如圖,放置在水平桌面上的臺(tái)燈的燈臂AB長為30cm,燈罩BC長為20cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°.使用發(fā)現(xiàn),光線最佳時(shí)燈罩BC與水平線所成的角為30°,此時(shí)燈罩頂端C到桌面的高度CE是多少cm?(結(jié)果精確到0.1cm,參考數(shù)據(jù): ≈1.732)

  27.某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.

  (1)求商場(chǎng)經(jīng)營該商品原來一天可獲利潤      元.

  (2)設(shè)后來該商品每件降價(jià)x元,商場(chǎng)一天可獲利潤y元.

  ①若商場(chǎng)經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價(jià)多少元?

  ②求出y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),商場(chǎng)獲利潤最大?

  28.如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.

  (1)求證:△ABM∽△EFA;

  (2)若AB=12,BM=5,求DE的長.

  29.如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).

  (1)求一次函數(shù)與反比例函數(shù)的解析式;

  (2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b> 的解集;

  (3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.

  30. 如圖,對(duì)稱軸為x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0).

  (1)求點(diǎn)B的坐標(biāo).

  (2)已知a=1,C為拋物線與y軸的交點(diǎn).

 ?、偃酎c(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo).

 ?、谠O(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.

下一頁分享>>>九年級(jí)數(shù)學(xué)上期末質(zhì)量檢測(cè)答案

2894621