學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 >

八年級數(shù)學基礎知識點

時間: 躍瀚20 分享

學習這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學習方法其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有所幫助。

初二數(shù)學知識點

分數(shù)的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變.

3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據(jù):分式的基本性質(zhì).

5.通分的關(guān)鍵:確定幾個分式的公分母.

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數(shù)的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

12.作為最后結(jié)果,如果是分式則應該是最簡分式.

含有字母系數(shù)的一元一次方程

引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。

含有字母系數(shù)的方程的解法與以前學過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

初二下冊數(shù)學知識點歸納北師大版

第一章一元一次不等式和一元一次不等式組

一、不等關(guān)系

1、一般地,用符號"<"(或"≤"),">"(或"≥")連接的式子叫做不等式.

2、要區(qū)別方程與不等式:方程表示的是相等的關(guān)系;不等式表示的是不相等的關(guān)系.

3、準確"翻譯"不等式,正確理解"非負數(shù)"、"不小于"等數(shù)學術(shù)語.

非負數(shù)<===>大于等于0(≥0)<===>0和正數(shù)<===>不小于0

非正數(shù)<===>小于等于0(≤0)<===>0和負數(shù)<===>不大于0

二、不等式的基本性質(zhì)

1、掌握不等式的基本性質(zhì),并會靈活運用:

(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:

如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即

如果a>b,并且c>0,那么ac>bc,.

(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:

如果a>b,并且c<0,那么ac

2、比較大小:(a、b分別表示兩個實數(shù)或整式)

一般地:

如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;

如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可見,要比較兩個實數(shù)的大小,只要考察它們的差就可以了.

三、不等式的解集:

1、能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.

2、不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù),與方程的解不同.

3、不等式的解集在數(shù)軸上的表示:

用數(shù)軸表示不等式的解集時,要確定邊界和方向:

①邊界:有等號的是實心圓圈,無等號的是空心圓圈;

②方向:大向右,小向左

四、一元一次不等式:

1、只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1.像這樣的不等式叫做一元一次不等式.

2、解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數(shù)時,不等號要改變方向.

3、解一元一次不等式的步驟:

①去分母;

②去括號;

③移項;

④合并同類項;

⑤系數(shù)化為1(不等號的改變問題)

4、一元一次不等式基本情形為ax>b(或ax

①當a>0時,解為;

②當a=0時,且b<0,則x取一切實數(shù);

當a=0時,且b≥0,則無解;

③當a<0時,解為;

5、不等式應用的探索(利用不等式解決實際問題)

列不等式解應用題基本步驟與列方程解應用題相類似,即:

①審:認真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如"大于"、"小于"、"不大于"、"不小于"等含義;

②設:設出適當?shù)奈粗獢?shù);

③列:根據(jù)題中的不等關(guān)系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:寫出答案,并檢驗答案是否符合題意.

數(shù)學學習方法技巧

自學能力的培養(yǎng)是深化學習的必由之路

在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學是一門能自學的學科,自學成才最典型的例子就是數(shù)學家華羅庚。

我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數(shù)學思維習慣,逐漸地培養(yǎng)起自己對數(shù)學的一種悟性。

自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養(yǎng)成預習的習慣。

因此,以前的數(shù)學學得扎實,就為以后的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。

學來學去,知識還是別人的。檢驗數(shù)學學得好不好的標準就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學好數(shù)學的必要條件,能獨立解題、解對題才是學好數(shù)學的標志。

自信才能自強

在考試中,總是看見有些同學的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。

具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就干瞪眼,無從下手。

數(shù)學題目是無限的,但數(shù)學的思想和方法卻是有限的。我們只要學好了有關(guān)的基礎知識,掌握了必要的數(shù)學思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學思維習慣,有沒有掌握正確的數(shù)學解題方法。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關(guān),迎來屬于自己的春天。


八年級數(shù)學基礎知識點相關(guān)文章:

初二數(shù)學知識點復習整理

八年級數(shù)學知識點整理歸納

人教版八年級數(shù)學上冊知識點總結(jié)

八年級下冊數(shù)學知識點整理

八年級下冊數(shù)學知識點

初二數(shù)學基本知識匯總

初二數(shù)學重要知識點

初二數(shù)學知識點整理歸納

數(shù)學八年級上冊知識點整理

初二數(shù)學知識點歸納

1121067