初二數(shù)學(xué)基礎(chǔ)知識點(diǎn)歸納總結(jié)
失敗乃成功之母,重復(fù)是學(xué)習(xí)之母。學(xué)習(xí),需要不斷的重復(fù)重復(fù),重復(fù)學(xué)過的知識,加深印象,其實(shí)任何科目的學(xué)習(xí)方法都是不斷重復(fù)學(xué)習(xí)。下面是小編給大家整理的一些初二數(shù)學(xué)的知識點(diǎn),希望對大家有所幫助。
初二數(shù)學(xué)下冊知識點(diǎn)歸納
一次函數(shù)
一、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b=0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.
二、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y=kx。
(2)性質(zhì):當(dāng)k>0時,直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k0,b>0圖像經(jīng)過一、二、三象限;
(2)k>0,b<0圖像經(jīng)過一、三、四象限;
(3)k>0,b=0圖像經(jīng)過一、三象限;
(4)k<0,b>0圖像經(jīng)過一、二、四象限;
(5)k<0,b<0圖像經(jīng)過二、三、四象限;
(6)k<0,b=0圖像經(jīng)過二、四象限。
一次函數(shù)表達(dá)式的確定
求一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)時,需要由兩個點(diǎn)來確定;求正比例函數(shù)y=kx(k≠0)時,只需一個點(diǎn)即可.
5.一次函數(shù)與二元一次方程組:
解方程組
從“數(shù)”的角度看,自變量(x)為何值時兩個函數(shù)的值相等.并
求出這個函數(shù)值
解方程組從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo).
數(shù)據(jù)的分析
數(shù)據(jù)的代表:平均數(shù)、眾數(shù)、中位數(shù)、極差、方差
八年級下冊數(shù)學(xué)期中知識點(diǎn)總結(jié)
1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。
3.平行四邊形的判定:兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5.直角三角形斜邊上的中線等于斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理:有一個角是直角的平行四邊形叫做矩形;對角線相等的平行四邊形是矩形;有三個角是直角的四邊形是矩形。
9.菱形的定義:鄰邊相等的平行四邊形。
10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
11.菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
12.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
13.正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
14.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形是正方形。
15.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
16.直角梯形的定義:有一個角是直角的梯形
17.等腰梯形的定義:兩腰相等的梯形。
18.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
19.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
八年級數(shù)學(xué)重要知識點(diǎn)
1.提公共因式法
※1.如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2.概念內(nèi)涵:
(1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;
(2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;
(3)提公因式法的理論依據(jù)是乘法對加法的分配律,即:
※3.易錯點(diǎn)點(diǎn)評:
(1)注意項(xiàng)的符號與冪指數(shù)是否搞錯;
(2)公因式是否提“干凈”;
(3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號中這一項(xiàng)為+1,不漏掉.
2.運(yùn)用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點(diǎn)點(diǎn)評:
因式分解要分解到底.如就沒有分解到底.
※4.運(yùn)用公式法:
(1)平方差公式:
①應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;
②二項(xiàng)式的每項(xiàng)(不含符號)都是一個單項(xiàng)式(或多項(xiàng)式)的平方;
③二項(xiàng)是異號.
(2)完全平方公式:
①應(yīng)是三項(xiàng)式;
②其中兩項(xiàng)同號,且各為一整式的平方;
③還有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.
3.因式分解的思路與解題步驟:
(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.
初二數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn)心得
1好初中數(shù)學(xué)課前要預(yù)習(xí)
初中生想要學(xué)好數(shù)學(xué),那么就要利用課前的時間將課上老師要講的內(nèi)容預(yù)習(xí)一下。初中數(shù)學(xué)課前的預(yù)習(xí)是要明白老師在課上大致所講的內(nèi)容,這樣有利于和方便初中生整理知識結(jié)構(gòu)。
初中生課前預(yù)習(xí)數(shù)學(xué)還能夠知道自己有哪些不明白的知識點(diǎn),這樣在課上就會集中注意力去聽,不會出現(xiàn)溜號和走神的情況。同時課前預(yù)習(xí)還可以將知識點(diǎn)形成體系,可以幫助初中生建立完整的知識結(jié)構(gòu)。
2學(xué)習(xí)初中數(shù)學(xué)課上是關(guān)鍵
初中生想要學(xué)好學(xué)生,在課上就是一個字:跟。上初中數(shù)學(xué)課時跟住老師,老師講到哪里一定要跟上,仔細(xì)看老師的板書,隨時知道老師講的是哪里,涉及到的知識點(diǎn)是什么。有的初中生喜歡記筆記,在這里提醒大家,初中數(shù)學(xué)課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課后完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課后可以適當(dāng)做一些初中數(shù)學(xué)基礎(chǔ)題
在每學(xué)完一課后,初中生可以在課后做一些初中數(shù)學(xué)的基礎(chǔ)題型,在做這樣的題時,建議大家是,不要出現(xiàn)錯誤的情況,做完題后要學(xué)會思考和整理。當(dāng)你的初中數(shù)學(xué)基礎(chǔ)題沒問題的時候,就可以做一些有點(diǎn)難度的提升題了,如果做不出來可以根據(jù)解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數(shù)學(xué)的學(xué)習(xí)有幫助的,但是如果將重點(diǎn)放在這上面,沒有什么好處。同時要學(xué)會整理,將自己錯題歸納并總結(jié),
數(shù)學(xué)是由簡單明了的事項(xiàng)一步一步地發(fā)展而來,所以,只要學(xué)習(xí)數(shù)學(xué)的人老老實(shí)實(shí)地、一步一步地去理解,并同時記住其要點(diǎn),以備以后之需用,就一定能理解其全部內(nèi)容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復(fù)地做同一件事,故不管誰都應(yīng)該會做.
初二數(shù)學(xué)基礎(chǔ)知識點(diǎn)歸納總結(jié)相關(guān)文章:
★ 初中數(shù)學(xué)基礎(chǔ)知識點(diǎn)歸納總結(jié)
★ 八年級數(shù)學(xué)知識點(diǎn)整理歸納
★ 初中數(shù)學(xué)基礎(chǔ)知識點(diǎn)總結(jié)
★ 初二數(shù)學(xué)知識點(diǎn)復(fù)習(xí)整理
★ 初二數(shù)學(xué)知識點(diǎn)歸納上冊人教版