學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級(jí)數(shù)學(xué)>

九年級(jí)數(shù)學(xué)上期末模擬試卷(2)

時(shí)間: 妙純901 分享

  九年級(jí)數(shù)學(xué)上期末模擬試卷參考答案

  一、選擇題

  1.下面圖形中,是中心對(duì)稱圖形的是(  )

  A. B. C. D.

  【考點(diǎn)】中心對(duì)稱圖形.

  【分析】根據(jù)中心對(duì)稱圖形的概念:把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心,可求解.

  【解答】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

  B、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

  C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

  D、是中心對(duì)稱圖形,故此選項(xiàng)正確;

  故選:D.

  【點(diǎn)評(píng)】此題主要考查了中心對(duì)稱圖形的概念,關(guān)鍵是找到對(duì)稱中心.

  2.下列方程中有實(shí)數(shù)根的是(  )

  A.x2+2x+3=0 B.x2+1=0 C.x2+3x+1=0 D.

  【考點(diǎn)】根的判別式.

  【分析】本題是根的判別式的應(yīng)用試題,不解方程而又準(zhǔn)確的判斷出方程解的情況,那只有根的判別式.

  當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;

  當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;

  當(dāng)△<0時(shí),方程沒(méi)有實(shí)數(shù)根.

  【解答】解:由題意可知x2+2x+3=0

  △=b2﹣4ac=4﹣12=﹣8<0,

  所以沒(méi)有是實(shí)數(shù)根;

  同理x2+1=0的△=b2﹣4ac=0﹣4<0,

  也沒(méi)有實(shí)數(shù)根;

  x2+3x+1=0的△=b2﹣4ac=9﹣4=5>0,

  所以有實(shí)數(shù)根;

  而最后一個(gè)去掉分母后x=1有實(shí)數(shù)根,但是使分式方程無(wú)意義,所以舍去.

  故選C.

  【點(diǎn)評(píng)】本題是對(duì)方程實(shí)數(shù)根的考查,求解時(shí)一要注意是否有實(shí)數(shù)根,二要注意有實(shí)數(shù)根時(shí)是否有意義.

  3.如圖,AB與⊙O相切于點(diǎn)A,BO與⊙O相交于點(diǎn)C,點(diǎn)D是優(yōu)弧AC上一點(diǎn),∠CDA=27°,則∠B的大小是(  )

  A.27° B.34° C.36° D.54°

  【考點(diǎn)】切線的性質(zhì).

  【分析】由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.

  【解答】解:∵AB與⊙O相切于點(diǎn)A,

  ∴OA⊥BA.

  ∴∠OAB=90°.

  ∵∠CDA=27°,

  ∴∠BOA=54°.

  ∴∠B=90°﹣54°=36°.

  故選:C.

  【點(diǎn)評(píng)】本題主要考查的是切線的性質(zhì)和圓周角定理,利用切線的性質(zhì)和圓周角定理求得∠OAB=90°、∠BOA=54°是解題的關(guān)鍵.

  4.如圖,矩形OABC上,點(diǎn)A、C分別在x、y軸上,點(diǎn)B在反比例y= 位于第二象限的圖象上,矩形面積為6,則k的值是(  )

  A.3 B.6 C.﹣3 D.﹣6

  【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義.

  【分析】由矩形OABC的面積結(jié)合反比例函數(shù)系數(shù)k的幾何意義,即可得出含絕對(duì)值符號(hào)的關(guān)于k的一元一次方程,解方程即可得出k的值,再根據(jù)反比例函數(shù)圖象所在的象限即可確定k值.

  【解答】解:∵點(diǎn)B在反比例y= 的圖象上,

  ∴S矩形OABC=6=|k|,

  ∴k=±6.

  ∵反比例函數(shù)y= 的部分圖象在第二象限,

  ∴k=﹣6.

  故選D.

  【點(diǎn)評(píng)】本題考查了反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵是根據(jù)反比例函數(shù)系數(shù)k的幾何意義找出含絕對(duì)值符號(hào)的關(guān)于k的一元一次方程.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),由矩形的面積結(jié)合反比例函數(shù)系數(shù)k的幾何意義求出反比例函數(shù)系數(shù)k是關(guān)鍵.

  5.如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別為PB、PC的中點(diǎn),△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=(  )

  A.4 B.6 C.8 D.不能確定

  【考點(diǎn)】平行四邊形的性質(zhì);三角形中位線定理.

  【分析】過(guò)P作PQ平行于DC,由DC與AB平行,得到PQ平行于AB,可得出四邊形PQCD與ABQP都為平行四邊形,進(jìn)而確定出△PDC與△PCQ面積相等,△PQB與△ABP面積相等,再由EF為△BPC的中位線,利用中位線定理得到EF為BC的一半,且EF平行于BC,得出△PEF與△PBC相似,相似比為1:2,面積之比為1:4,求出△PBC的面積,而△PBC面積=△CPQ面積+△PBQ面積,即為△PDC面積+△PAB面積,即為平行四邊形面積的一半,即可求出所求的面積.

  【解答】解:過(guò)P作PQ∥DC交BC于點(diǎn)Q,由DC∥AB,得到PQ∥AB,

  ∴四邊形PQCD與四邊形APQB都為平行四邊形,

  ∴△PDC≌△CQP,△ABP≌△QPB,

  ∴S△PDC=S△CQP,S△ABP=S△QPB,

  ∵EF為△PCB的中位線,

  ∴EF∥BC,EF= BC,

  ∴△PEF∽△PBC,且相似比為1:2,

  ∴S△PEF:S△PBC=1:4,S△PEF=2,

  ∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.

  故選:C.

  【點(diǎn)評(píng)】此題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.

  6.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1

  A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

  【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系.

  【分析】(1)正確.根據(jù)對(duì)稱軸公式計(jì)算即可.

  (2)錯(cuò)誤,利用x=﹣3時(shí),y<0,即可判斷.

  (3)正確.由圖象可知拋物線經(jīng)過(guò)(﹣1,0)和(5,0),列出方程組求出a、b即可判斷.

  (4)錯(cuò)誤.利用函數(shù)圖象即可判斷.

  (5)正確.利用二次函數(shù)與二次不等式關(guān)系即可解決問(wèn)題.

  【解答】解:(1)正確.∵﹣ =2,

  ∴4a+b=0.故正確.

  (2)錯(cuò)誤.∵x=﹣3時(shí),y<0,

  ∴9a﹣3b+c<0,

  ∴9a+c<3b,故(2)錯(cuò)誤.

  (3)正確.由圖象可知拋物線經(jīng)過(guò)(﹣1,0)和(5,0),

  ∴ 解得 ,

  ∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,

  ∵a<0,

  ∴8a+7b+2c>0,故(3)正確.

  (4)錯(cuò)誤,∵點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3),

  ∵ ﹣2= ,2﹣(﹣ )= ,

  ∴ <

  ∴點(diǎn)C離對(duì)稱軸的距離近,

  ∴y3>y2,

  ∵a<0,﹣3<﹣ <2,

  ∴y1

  ∴y1

  (5)正確.∵a<0,

  ∴(x+1)(x﹣5)=﹣3/a>0,

  即(x+1)(x﹣5)>0,

  故x<﹣1或x>5,故(5)正確.

  ∴正確的有三個(gè),

  故選B.

  【點(diǎn)評(píng)】本題考查二次函數(shù)與系數(shù)關(guān)系,靈活掌握二次函數(shù)的性質(zhì)是解決問(wèn)題的關(guān)鍵,學(xué)會(huì)利用圖象信息解決問(wèn)題,屬于中考??碱}型.

  二、填空題

  7.一枚質(zhì)地均勻的正方體骰子,其六個(gè)面上分別刻有1、2、3、4、5、6六個(gè)數(shù)字,投擲這個(gè)骰子一次,則向上一面的數(shù)字小于3的概率是   .

  【考點(diǎn)】概率公式.

  【分析】由于一枚質(zhì)地均勻的正方體骰子,骰子向上的一面點(diǎn)數(shù)可能為1、2、3、4、5、6,共有6種可能,小于3的點(diǎn)數(shù)有1、2,則根據(jù)概率公式可計(jì)算出骰子向上的一面點(diǎn)數(shù)小于3的概率.

  【解答】解:擲一枚質(zhì)地均勻的正方體骰子,骰子向上的一面點(diǎn)數(shù)共有6種可能,而只有出現(xiàn)點(diǎn)數(shù)為1、2才小于3,

  所以這個(gè)骰子向上的一面點(diǎn)數(shù)小于3的概率= = .

  故答案為: .

  【點(diǎn)評(píng)】本題考查了概率公式:隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).

  8.已知一元二次方程x2﹣4x﹣3=0的兩根為m,n,則m2﹣mn+n2= 25 .

  【考點(diǎn)】根與系數(shù)的關(guān)系.

  【分析】由m與n為已知方程的解,利用根與系數(shù)的關(guān)系求出m+n與mn的值,將所求式子利用完全平方公式變形后,代入計(jì)算即可求出值.

  【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的兩個(gè)根,

  ∴m+n=4,mn=﹣3,

  則m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.

  故答案為:25.

  【點(diǎn)評(píng)】此題考查了一元二次方程根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.

  9.一個(gè)扇形的圓心角為60°,半徑是10cm,則這個(gè)扇形的弧長(zhǎng)是   cm.

  【考點(diǎn)】弧長(zhǎng)的計(jì)算.

  【分析】弧長(zhǎng)公式是l= ,代入就可以求出弧長(zhǎng).

  【解答】解:弧長(zhǎng)是: = cm.

  【點(diǎn)評(píng)】本題考查的是扇形的弧長(zhǎng)公式的運(yùn)用,正確記憶弧長(zhǎng)公式是解題的關(guān)鍵.

  10.將拋物線y=x2+1向下平移2個(gè)單位,向右平移3個(gè)單位,則此時(shí)拋物線的解析式是 y=x2﹣6x+8 .

  【考點(diǎn)】二次函數(shù)圖象與幾何變換.

  【分析】根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.

  【解答】解:拋物線y=x2+1向下平移2個(gè)單位后的解析式為:y=x2+1﹣2=x2﹣1.

  再向右平移3個(gè)單位所得拋物線的解析式為:y=(x﹣3)2﹣1,即y=x2﹣6x+8.

  故答案是:y=x2﹣6x+8.

  【點(diǎn)評(píng)】本題考查的是二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.

  11.如圖,直線AA1∥BB1∥CC1,如果 ,AA1=2,CC1=6,那么線段BB1的長(zhǎng)是 3 .

  【考點(diǎn)】平行線分線段成比例.

  【分析】過(guò)A1作AE∥AC,交BB1于D,交CC1于E,得出四邊形ABDA1和四邊形BCED是平行四邊形,求出AA1=BD=CE=2,EC1=6﹣2=4, = = ,根據(jù)BB1∥CC1得出 = ,代入求出DB1=1即可.

  【解答】解:如圖:

  過(guò)A1作AE∥AC,交BB1于D,交CC1于E,

  ∵直線AA1∥BB1∥CC1,

  ∴四邊形ABDA1和四邊形BCED是平行四邊形,

  ∴AA1=2,CC1=6,

  ∴AA1=BD=CE=2,EC1=6﹣2=4, = = ,

  ∴∵BB1∥CC1,

  ∴ = ,

  ∴ = ,

  ∴DB1=1,

  ∴BB1=2+1=3,

  故答案為:3.

  【點(diǎn)評(píng)】本題考查了平行線分線段成比例定理的應(yīng)用,能根據(jù)定理得出比例式是解此題的關(guān)鍵.

  12.如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式為 y=﹣  .

  【考點(diǎn)】待定系數(shù)法求反比例函數(shù)解析式;平行四邊形的性質(zhì).

  【分析】設(shè)經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式是y= (k≠0),設(shè)C(x,y).根據(jù)平行四邊形的性質(zhì)求出點(diǎn)C的坐標(biāo)(﹣1,3).然后利用待定系數(shù)法求反比例函數(shù)的解析式.

  【解答】解:設(shè)經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式是y= (k≠0),設(shè)C(x,y).

  ∵四邊形OABC是平行四邊形,

  ∴BC∥OA,BC=OA;

  ∵A(4,0),B(3,3),

  ∴點(diǎn)C的縱坐標(biāo)是y=3,|3﹣x|=4(x<0),

  ∴x=﹣1,

  ∴C(﹣1,3).

  ∵點(diǎn)C在反比例函數(shù)y= (k≠0)的圖象上,

  ∴3= ,

  解得,k=﹣3,

  ∴經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式是y=﹣ .

  故答案為:y=﹣ .

  【點(diǎn)評(píng)】本題主要考查了平行四邊形的性質(zhì)(對(duì)邊平行且相等)、利用待定系數(shù)法求反比例函數(shù)的解析式.解答反比例函數(shù)的解析式時(shí),還借用了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,經(jīng)過(guò)函數(shù)的某點(diǎn)一定在函數(shù)的圖象上.

  三、

  13.解方程:

  (1)x2﹣x=3

  (2)(x+3)2=(1﹣2x)2.

  【考點(diǎn)】解一元二次方程-因式分解法.

  【分析】(1)公式法求解可得;

  (2)直接開(kāi)平方法求解即可得.

  【解答】解:(1)x2﹣x﹣3=0,

  ∵a=1,b=﹣1,c=﹣3,

  ∴△=1+12=13>0,

  ∴x= ,

  ∴ , ;

  (2)x+3=±(1﹣2x),

  即x+3=1﹣2x或x+3=2x﹣1,

  解得: ,x2=4.

  【點(diǎn)評(píng)】本題主要考查解一元二次方程的能力,根據(jù)不同的方程選擇合適的方法是解題的關(guān)鍵.

  14.如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

  (1)若∠AOD=52°,求∠DEB的度數(shù);

  (2)若OC=3,OA=5,求AB的長(zhǎng).

  【考點(diǎn)】垂徑定理;勾股定理;圓周角定理.

  【分析】(1)根據(jù)垂徑定理,得到 = ,再根據(jù)圓周角與圓心角的關(guān)系,得知∠E= ∠O,據(jù)此即可求出∠DEB的度數(shù);

  (2)由垂徑定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可.

  【解答】解:(1)∵AB是⊙O的一條弦,OD⊥AB,

  ∴ = ,∴∠DEB= ∠AOD= ×52°=26°;

  (2)∵AB是⊙O的一條弦,OD⊥AB,

  ∴AC=BC,即AB=2AC,

  在Rt△AOC中,AC= = =4,

  則AB=2AC=8.

  【點(diǎn)評(píng)】本題考查了垂徑定理,勾股定理及圓周角定理.關(guān)鍵是由垂徑定理得出相等的弧,相等的線段,由垂直關(guān)系得出直角三角形,運(yùn)用勾股定理.

  15.已知函數(shù)y與x+1成反比例,且當(dāng)x=﹣2時(shí),y=﹣3.

  (1)求y與x的函數(shù)關(guān)系式;

  (2)當(dāng) 時(shí),求y的值.

  【考點(diǎn)】待定系數(shù)法求反比例函數(shù)解析式.

  【分析】(1)設(shè)出函數(shù)解析式,把相應(yīng)的點(diǎn)代入即可;

  (2)把自變量的取值代入(1)中所求的函數(shù)解析式即可.

  【解答】解:(1)設(shè) ,

  把x=﹣2,y=﹣3代入得 .

  解得:k=3.

  ∴ .

  (2)把 代入解析式得: .

  【點(diǎn)評(píng)】本題考查用待定系數(shù)法求函數(shù)解析式,注意應(yīng)用點(diǎn)在函數(shù)解析式上應(yīng)適合這個(gè)函數(shù)解析式.

  16.如圖是一位同學(xué)設(shè)計(jì)的用手電筒來(lái)測(cè)量某古城墻高度的示意圖.點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測(cè)得AB=2米,BP=3米,PD=12米,那么該古城墻的高度CD是 8 米.

  【考點(diǎn)】相似三角形的應(yīng)用.

  【分析】首先證明△ABP∽△CDP,可得 = ,再代入相應(yīng)數(shù)據(jù)可得答案.

  【解答】解:由題意可得:∠APE=∠CPE,

  ∴∠APB=∠CPD,

  ∵AB⊥BD,CD⊥BD,

  ∴∠ABP=∠CDP=90°,

  ∴△ABP∽△CDP,

  ∴ = ,

  ∵AB=2米,BP=3米,PD=12米,

  ∴ = ,

  CD=8米,

  故答案為:8.

  【點(diǎn)評(píng)】此題主要考查了相似三角形的應(yīng)用,關(guān)鍵是掌握相似三角形對(duì)應(yīng)邊成比例.

  17.某地區(qū)2013年投入教育經(jīng)費(fèi)2500萬(wàn)元,2015年投入教育經(jīng)費(fèi)3025萬(wàn)元.

  (1)求2013年至2015年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

  (2)根據(jù)(1)所得的年平均增長(zhǎng)率,預(yù)計(jì)2016年該地區(qū)將投入教育經(jīng)費(fèi)多少萬(wàn)元.

  【考點(diǎn)】一元二次方程的應(yīng)用.

  【分析】(1)一般用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),2014年要投入教育經(jīng)費(fèi)是2500(1+x)萬(wàn)元,在2014年的基礎(chǔ)上再增長(zhǎng)x,就是2015年的教育經(jīng)費(fèi)數(shù)額,即可列出方程求解.

  (2)利用(1)中求得的增長(zhǎng)率來(lái)求2016年該地區(qū)將投入教育經(jīng)費(fèi).

  【解答】解:設(shè)增長(zhǎng)率為x,根據(jù)題意2014年為2500(1+x)萬(wàn)元,2015年為2500(1+x)2萬(wàn)元.

  則2500(1+x)2=3025,

  解得x=0.1=10%,或x=﹣2.1(不合題意舍去).

  答:這兩年投入教育經(jīng)費(fèi)的平均增長(zhǎng)率為10%.

  (2)3025×(1+10%)=3327.5(萬(wàn)元).

  故根據(jù)(1)所得的年平均增長(zhǎng)率,預(yù)計(jì)2016年該地區(qū)將投入教育經(jīng)費(fèi)3327.5萬(wàn)元.

  【點(diǎn)評(píng)】本題考查了一元二次方程中增長(zhǎng)率的知識(shí).增長(zhǎng)前的量×(1+年平均增長(zhǎng)率)年數(shù)=增長(zhǎng)后的量.

  四、

  18.方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

  (1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫(xiě)出A1的坐標(biāo);

  (2)作出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并求出C2所經(jīng)過(guò)的路徑長(zhǎng).

  【考點(diǎn)】作圖-旋轉(zhuǎn)變換;作圖-軸對(duì)稱變換.

  【分析】(1)分別作出各點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),再順次連接即可,根據(jù)點(diǎn)在坐標(biāo)系中的位置寫(xiě)出點(diǎn)坐標(biāo)即可;

  (2)分別作出各點(diǎn)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的對(duì)稱點(diǎn),再順次連接即可,根據(jù)弧長(zhǎng)公式計(jì)算可得C2所經(jīng)過(guò)的路徑長(zhǎng).

  【解答】解:(1)如圖,△A1B1C1即為所求作三角形A1(﹣5,﹣4);

  (2)如圖,△A2B2C2即為所求作三角形,

  ∵OC2= = ,

  ∴C2所經(jīng)過(guò)的路徑 的長(zhǎng)為 = π.

  【點(diǎn)評(píng)】本題考查的是作圖﹣軸對(duì)稱變換、旋轉(zhuǎn)變換,作出各頂點(diǎn)軸對(duì)稱變換和旋轉(zhuǎn)變換的對(duì)應(yīng)點(diǎn)是解答此題作圖的關(guān)鍵.

  19.甲布袋中有三個(gè)紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個(gè)白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機(jī)摸出一個(gè)紅球,小剛從乙袋中隨機(jī)摸出一個(gè)白球.

  (1)用畫(huà)樹(shù)狀圖(樹(shù)形圖)或列表的方法,求摸出的兩個(gè)球上的數(shù)字之和為6的概率;

  (2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個(gè)球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個(gè)游戲公平嗎?為什么?

  【考點(diǎn)】游戲公平性;列表法與樹(shù)狀圖法.

  【分析】游戲是否公平,關(guān)鍵要看游戲雙方獲勝的機(jī)會(huì)是否相等,即判斷雙方取勝的概率是否相等,或轉(zhuǎn)化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.

  【解答】解:

  (1)解法一:樹(shù)狀圖

  ∴P(兩個(gè)球上的數(shù)字之和為6)= .(2分)

  解法二:列表

  2 3 4

  1 (1,2) (1,3) (1,4)

  2 (2,2) (2,3) (2,4)

  3 (3,2) (3,3) (3,4)

  ∴P(兩個(gè)球上的數(shù)字之和為6)= .

  (2)不公平.(1分)

  ∵P(小亮勝)= ,P(小剛勝)= .(2分)

  ∴P(小亮勝)≠P(小剛勝).

  ∴這個(gè)游戲不公平.(2分)

  【點(diǎn)評(píng)】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計(jì)算每個(gè)事件的概率,概率相等就公平,否則就不公平.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.

  20.如圖,在△ABC中,BE平分∠ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作ED∥BC交AB于點(diǎn)D.

  (1)求證:AE•BC=BD•AC;

  (2)如果S△ADE=3,S△BDE=2,DE=6,求BC的長(zhǎng).

  【考點(diǎn)】相似三角形的判定與性質(zhì).

  【分析】(1)由BE平分∠ABC交AC于點(diǎn)E,ED∥BC,可證得BD=DE,△ADE∽△ABC,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AE•BC=BD•AC;

  (2)根據(jù)三角形面積公式與S△ADE=3,S△BDE=2,可得AD:BD=3:2,然后由平行線分線段成比例定理,求得BC的長(zhǎng).

  【解答】(1)證明:∵BE平分∠ABC,

  ∴∠ABE=∠CBE.…(1分)

  ∵DE∥BC,

  ∴∠DEB=∠CBE…(1分)

  ∴∠ABE=∠DEB.

  ∴BD=DE,…(1分)

  ∵DE∥BC,

  ∴△ADE∽△ABC,

  ∴ …(1分)

  ∴ ,

  ∴AE•BC=BD•AC;…(1分)

  (2)解:設(shè)△ABE中邊AB上的高為h.

  ∴ ,…(2分)

  ∵DE∥BC,

  ∴ . …(1分)

  ∴ ,

  ∴BC=10. …(2分)

  【點(diǎn)評(píng)】此題考查了相似三角形的判定與性質(zhì)、平行線分線段成比例定理以及等腰三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.

  21.如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC邊于邊D,交AC邊于點(diǎn)G,過(guò)D作⊙O的切線EF,交AB的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)E.

  (1)求證:BD=CD;

  (2)若AE=6,BF=4,求⊙O的半徑.

  【考點(diǎn)】切線的性質(zhì);等腰三角形的性質(zhì).

  【分析】(1)連接AD,根據(jù)等腰三角形三線合一即可證明.

  (2)設(shè)⊙O的半徑為R,則FO=4+R,F(xiàn)A=4+2R,OD=R,連接OD,由△FOD∽△FAE,得 = 列出方程即可解決問(wèn)題.

  【解答】(1)證明:連接AD,

  ∵AB是直徑,

  ∴∠ADB=90°,

  ∵AB=AC,AD⊥BC,

  ∴BD=DC.

  (2)解:設(shè)⊙O的半徑為R,則FO=4+R,F(xiàn)A=4+2R,OD=R,連接OD、

  ∵AB=AC,

  ∴∠ABC=∠C,

  ∵OB=OD,

  ∴∠ABC=∠ODB,

  ∴∠ODB=∠C,

  ∴OD∥AC,

  ∴△FOD∽△FAE,

  ∴ = ,

  ∴ = ,

  整理得R2﹣R﹣12=0,

  ∴R=4或(﹣3舍棄).

  ∴⊙O的半徑為4.

  【點(diǎn)評(píng)】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,利用相似三角形的性質(zhì)解決問(wèn)題,屬于中考常考題型.

  22.(10分)(2016•商丘三模)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù) 的圖象相交于點(diǎn)B(m,1).

  (1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;

  (2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

  【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

  【分析】(1)由點(diǎn)在函數(shù)圖象上,得到點(diǎn)的坐標(biāo)滿足函數(shù)解析式,利用待定系數(shù)法即可求得.

  (2)分兩種情況,一種是∠BPA=90°,另一種是∠PBA=90°,所以有兩種答案.

  【解答】解:(1)∵B在的圖象上,

  ∴把B(m,1)代入y= 得m=2

  ∴B點(diǎn)的坐標(biāo)為(2,1)

  ∵B(2,1)在直線y=ax﹣a(a為常數(shù))上,

  ∴1=2a﹣a,

  ∴a=1

  ∴一次函數(shù)的解析式為y=x﹣1.

  (2)過(guò)B點(diǎn)向y軸作垂線交y軸于P點(diǎn).此時(shí)∠BPA=90°

  ∵B點(diǎn)的坐標(biāo)為(2,1)

  ∴P點(diǎn)的坐標(biāo)為(0,1)

  當(dāng)PB⊥AB時(shí),

  在Rt△P1AB中,PB=2,PA=2

  ∴AB=2

  在等腰直角三角形PAB中,PB=PA=2

  ∴PA= =4

  ∴OP=4﹣1=3

  ∴P點(diǎn)的坐標(biāo)為(0,3)

  ∴P點(diǎn)的坐標(biāo)為(0,1)或(0,3).

  【點(diǎn)評(píng)】主要考查了一次函數(shù)和反比例函數(shù)的交點(diǎn)問(wèn)題,待定系數(shù)法是常用的方法,結(jié)合圖形去分析,體現(xiàn)數(shù)形結(jié)合思想的重要性.

  23.(12分)(2016秋•余干縣期末)如圖,拋物線y=﹣ x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

  (1)求拋物線的解析式;

  (2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

  (3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△CBF的面積最大?求出△CBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

  【考點(diǎn)】二次函數(shù)綜合題.

  【分析】(1)把A(﹣1,0),C(0,2)代入y=﹣ x2+bx+c列方程組即可.

  (2)先求出CD的長(zhǎng),分兩種情形①當(dāng)CP=CD時(shí),②當(dāng)DC=DP時(shí)分別求解即可.

  (3)求出直線BC的解析式,設(shè)E 則F ,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題.

  【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣ x2+bx+c得 ,

  解得 ,c=2,

  ∴拋物線的解析式為y=﹣ x2+ x+2.

  (2)存在.如圖1中,∵C(0,2),D( ,0),

  ∴OC=2,OD= ,CD= =

  ①當(dāng)CP=CD時(shí),可得P1( ,4).

 ?、诋?dāng)DC=DP時(shí),可得P2( , ),P3( ,﹣ )

  綜上所述,滿足條件的P點(diǎn)的坐標(biāo)為 或 或 .

  (3)如圖2中,

  對(duì)于拋物線y=﹣ x2+ x+2,當(dāng)y=0時(shí),﹣ x2+ x+2=0,解得x1=4,x2=﹣1

  ∴B(4,0),A(﹣1,0),

  由B(4,0),C(0,2)得直線BC的解析式為y=﹣ x+2,

  設(shè)E 則F ,

  EF= ﹣ =

  ∴ <0,∴當(dāng)m=2時(shí),EF有最大值2,

  此時(shí)E是BC中點(diǎn),

  ∴當(dāng)E運(yùn)動(dòng)到BC的中點(diǎn)時(shí),△EBC面積最大,

  ∴△EBC最大面積= ×4×EF= ×4×2=4,此時(shí)E(2,1).

  【點(diǎn)評(píng)】本題考查二次函數(shù)、一次函數(shù)的應(yīng)用、最值問(wèn)題.等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,學(xué)會(huì)分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.

  看了“九年級(jí)數(shù)學(xué)上期末模擬試卷”的人還看了:

1.九年級(jí)數(shù)學(xué)上冊(cè)期末試題

2.九年級(jí)上學(xué)期數(shù)學(xué)期末試卷

3.九年級(jí)數(shù)學(xué)上學(xué)期期末考試卷

4.九年級(jí)上冊(cè)數(shù)學(xué)試卷及答案

5.九年級(jí)數(shù)學(xué)上冊(cè)期末考試卷

2892038