四年級數(shù)學(xué)知識點梳理
各個科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,基本離不開背、記,練,數(shù)學(xué)作為最燒腦的科目之一,也是一樣的。下面是小編給大家整理的一些四年級數(shù)學(xué)知識點的學(xué)習(xí)資料,希望對大家有所幫助。
人教版四年級下冊數(shù)學(xué)知識點
雞兔問題公式
(1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:
(總腳數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或者是(每只兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當(dāng)雞的總腳數(shù)比兔的總腳數(shù)多時,可用公式
(每只雞腳數(shù)×總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)
或(每只兔腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當(dāng)兔的總腳數(shù)比雞的總腳數(shù)多時,可用公式。
(每只雞的腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或(每只兔的腳數(shù)×總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1只合格品得分?jǐn)?shù)×產(chǎn)品總數(shù)-實得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)。或者是總產(chǎn)品數(shù)-(每只不合格品扣分?jǐn)?shù)×總產(chǎn)品數(shù)+實得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)。
例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個合格品記4分,每生產(chǎn)一個不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(“得失問題”也稱“運(yùn)玻璃器皿問題”,運(yùn)到完好無損者每只給運(yùn)費(fèi)×-×元,破損者不僅不給運(yùn)費(fèi),還需要賠成本×-×元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。
例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬于假設(shè)問題,假設(shè)的和最后結(jié)果相反。
2、“雞兔同籠”問題的解題方法
假設(shè)法:
①假如都是兔
②假如都是雞
③古人“抬腳法”:
解答思路:
假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨(dú)腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數(shù)就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數(shù)÷2-雞兔總數(shù)=兔的只數(shù);
雞兔總數(shù)-兔的只數(shù)=雞的只數(shù)。
四年級下冊數(shù)學(xué)知識點
四則運(yùn)算
1、加法、減法、乘法和除法統(tǒng)稱四則運(yùn)算。
2、在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括號的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括號,要先算括號里面的,再算括號外面的;括號里面的算式計算順序遵循以上的計算順序。
5、先乘除,后加減,有括號,提前算
關(guān)于“0”的運(yùn)算
1、“0”不能做除數(shù); 字母表示:a÷0錯誤
2、一個數(shù)加上0還得原數(shù); 字母表示:a+0=a
3、一個數(shù)減去0還得原數(shù); 字母表示:a-0=a
4、被減數(shù)等于減數(shù),差是0; 字母表示:a-a=0
5、一個數(shù)和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的數(shù),還得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(無意義)
小學(xué)四年級上冊數(shù)學(xué)知識點大全
1.大數(shù)的認(rèn)識
億以內(nèi)的數(shù)的認(rèn)識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬;
2.數(shù)級
數(shù)級是為便于人們記讀阿拉伯?dāng)?shù)的一種識讀方法,在位值制(數(shù)位順序)的基礎(chǔ)上,以三位或四位分級的原則,把數(shù)讀,寫出來。通常在阿拉伯?dāng)?shù)的書寫上,以小數(shù)點或者空格作為各個數(shù)級的標(biāo)識,從右向左把數(shù)分開。
3.數(shù)級分類
(1)四位分級法
即以四位數(shù)為一個數(shù)級的分級方法。我國讀數(shù)的習(xí)慣,就是按這種方法讀的。
如:萬(數(shù)字后面4個0)、億(數(shù)字后面8個0)、兆(數(shù)字后面12個0,這是中法計數(shù))……
這些級分別叫做個級,萬級,億級……
(2)三位分級法
即以三位數(shù)為一個數(shù)級的分級方法。這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數(shù)字后面3個0、百萬,數(shù)字后面6個0、十億,數(shù)字后面9個0……。
4.數(shù)位
數(shù)位是指寫數(shù)時,把數(shù)字并列排成橫列,一個數(shù)字占有一個位置,這些位置,都叫做數(shù)位。從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。這就說明計數(shù)單位和數(shù)位的概念是不同的。
四年級數(shù)學(xué)知識點梳理相關(guān)文章:
★ 做小學(xué)四年級數(shù)學(xué)上冊知識點總結(jié)
★ 小學(xué)四年級數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)
★ 小學(xué)四年級下冊數(shù)學(xué)知識點復(fù)習(xí)資料整理
★ 蘇教版四年級數(shù)學(xué)期末復(fù)習(xí)知識點匯總