2022高中數(shù)學知識點
在人類歷史發(fā)展和社會生活中,數(shù)學也發(fā)揮著不可替代的作用,也是學習和研究現(xiàn)代科學技術(shù)必不可少的基本工具。下面小編為大家?guī)?022高中數(shù)學知識點,希望大家喜歡!
高中數(shù)學知識點
(一)導數(shù)第一定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f(x0) ,即導數(shù)第一定義
(二)導數(shù)第二定義
設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f(x0) ,即 導數(shù)第二定義
(三)導函數(shù)與導數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應著一個確定的導數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導函數(shù)簡稱導數(shù)。
(四)單調(diào)性及其應用
1.利用導數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
學習了導數(shù)基礎(chǔ)知識點,接下來可以學習高二數(shù)學中涉及到的導數(shù)應用的部分。
1、課前預習:上課前要做預習,課前預習能提前了解將要學習的知識。
2、記筆記:指的是課堂筆記,每節(jié)課時間有限,老師一般講的都是精華部分。
3、課后復習:通預習一樣,也是行之有效的方法。
4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。
5、學會歸類總結(jié):學習數(shù)學記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經(jīng)常出錯的題目集中在一起。
7、寫考試總結(jié):考試總結(jié)可以幫助找出學習之中不足之處,以及知識的薄弱環(huán)節(jié)。
高考數(shù)學復習重點
第一,函數(shù)與導數(shù)
主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統(tǒng)計
這部分和我們的生活聯(lián)系比較大,屬應用題。
第六,空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數(shù)。
2022高中數(shù)學知識點相關(guān)文章: