學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數學 >

高一數學科必修一知識考點

時間: 贊銳20 分享

在學習上,我們要深知學習的重要性.學習是學生的基本,至始至終都把學習擺在第一位.為了加強綜合素質,不斷地加強與自我的專業(yè)相關課程的學習,來完善自我。以下是小編給大家整理的高一數學科必修一知識考點,希望能幫助到你!

高一數學科必修一知識考點1

函數的性質

1.函數的單調性(局部性質)

(1)增函數

設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.

注意:函數的單調性是函數的局部性質;

(2)圖象的特點

如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區(qū)間與單調性的判定方法

(A)定義法:

(1)任取x1,x2∈D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(即判斷差f(x1)-f(x2)的正負);

(5)下結論(指出函數f(x)在給定的區(qū)間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”

注意:函數的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

8.函數的奇偶性(整體性質)

(1)偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

(2)奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

(3)具有奇偶性的函數的圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

9.利用定義判斷函數奇偶性的步驟:

1首先確定函數的定義域,并判斷其是否關于原點對稱;

2確定f(-x)與f(x)的關系;

3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.

10、函數的解析表達式

(1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

11.函數(小)值

1利用二次函數的性質(配方法)求函數的(小)值

2利用圖象求函數的(小)值

3利用函數單調性的判斷函數的(小)值:

如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

高一數學科必修一知識考點2

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性,

(2)元素的互異性,

(3)元素的無序性,

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

?注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n個元素的集合,含有2n個子集,2n-1個真子集

三、集合的運算

運算類型交集并集補集

定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

例題:

1.下列四組對象,能構成集合的是()

A某班所有高個子的學生B的藝術家C一切很大的書D倒數等于它自身的實數

2.集合{a,b,c}的真子集共有個

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是.

4.設集合A=,B=,若AB,則的取值范圍是

5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,

兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。

6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

注意:

1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

求函數的定義域時列不等式組的主要依據是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數不小于零;

(3)對數式的真數必須大于零;

(4)指數、對數式的底必須大于零且不等于1.

(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等于零,

(7)實際問題中的函數的定義域還要保證實際問題有意義.

相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致(兩點必須同時具備)

(見課本21頁相關例2)

2.值域:先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3.函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數軸表示.

5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B

6.分段函數

(1)在定義域的不同部分上有不同的解析表達式的函數。

(2)各部分的自變量的取值情況.

(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

補充:復合函數

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。

二.函數的性質

1.函數的單調性(局部性質)

(1)增函數

設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.

注意:函數的單調性是函數的局部性質;

(2)圖象的特點

如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區(qū)間與單調性的判定方法

(A)定義法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3變形(通常是因式分解和配方);

○4定號(即判斷差f(x1)-f(x2)的正負);

○5下結論(指出函數f(x)在給定的區(qū)間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”

注意:函數的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

8.函數的奇偶性(整體性質)

(1)偶函數

一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

(2).奇函數

一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

(3)具有奇偶性的函數的圖象的特征

偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

利用定義判斷函數奇偶性的步驟:

○1首先確定函數的定義域,并判斷其是否關于原點對稱;

○2確定f(-x)與f(x)的關系;

○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數的圖象判定.

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的主要方法有:

1)湊配法

2)待定系數法

3)換元法

4)消參法

10.函數(小)值(定義見課本p36頁)

○1利用二次函數的性質(配方法)求函數的(小)值

○2利用圖象求函數的(小)值

○3利用函數單調性的判斷函數的(小)值:

如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

例題:

1.求下列函數的定義域:

⑴⑵

2.設函數的定義域為,則函數的定義域為__

3.若函數的定義域為,則函數的定義域是

4.函數,若,則=

6.已知函數,求函數,的解析式

7.已知函數滿足,則=。

8.設是R上的奇函數,且當時,,則當時=

在R上的解析式為

9.求下列函數的單調區(qū)間:

⑴(2)

10.判斷函數的單調性并證明你的結論.

11.設函數判斷它的奇偶性并且求證

高一數學科必修一知識考點3

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數);

(4)直線系方程:即具有某一共同性質的直線


高一數學科必修一知識考點相關文章:

高一數學必修一知識點匯總

高中數學高一數學必修一知識點

高一數學必修一知識點總結

高一數學必修1知識點歸納

數學高一必修一知識點

高一數學必修一知識整理

高一數學知識點總結(考前必看)

高中必修一數學知識點歸納

高一數學必修一知識點總結歸納

高一數學必修一的知識點總結介紹

1070056