學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)

時(shí)間: 贊銳0 分享

即使我們的成績(jī)不是很好,但只要有心想要學(xué)習(xí),那么我們就應(yīng)該笨鳥(niǎo)先飛,所謂"勤能補(bǔ)拙“沒(méi)有人一出生就是天才,他們都是經(jīng)過(guò)艱苦的努力,才會(huì)成功的。以下是小編給大家整理的高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn),希望能幫助到你!

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)1

1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

注意:2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.

定義域補(bǔ)充

能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

值域補(bǔ)充

(1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

3.函數(shù)圖象知識(shí)歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。

(2)畫(huà)法

A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x,y),最后用平滑的曲線將這些點(diǎn)連接起來(lái).

B、圖象變換法(請(qǐng)參考必修4三角函數(shù))

常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

(3)作用:

1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)2

一、集合有關(guān)概念

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性

說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

①任何一個(gè)集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時(shí)BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運(yùn)算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)3

指數(shù)函數(shù)

(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

(6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。

(7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。

(8)顯然指數(shù)函數(shù)_。

對(duì)數(shù)函數(shù)

對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對(duì)數(shù)函數(shù)_。

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)相關(guān)文章

高一上下學(xué)期必須學(xué)會(huì)的知識(shí)點(diǎn)復(fù)習(xí)大綱

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)

高一上學(xué)期數(shù)學(xué)必修內(nèi)容總結(jié)

高一數(shù)學(xué)學(xué)習(xí)方法與技巧

高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)

2017高一文科數(shù)學(xué)知識(shí)點(diǎn)有哪些

浙教版高一數(shù)學(xué)知識(shí)點(diǎn)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)上學(xué)期教學(xué)總結(jié)

2017高一數(shù)學(xué)期末考試知識(shí)點(diǎn)

高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn)

即使我們的成績(jī)不是很好,但只要有心想要學(xué)習(xí),那么我們就應(yīng)該笨鳥(niǎo)先飛,所謂勤能補(bǔ)拙“沒(méi)有人一出生就是天才,他們都是經(jīng)過(guò)艱苦的努力,才會(huì)成功的。以下是小編給大家整理的高一數(shù)學(xué)科上學(xué)期知識(shí)點(diǎn),希
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高一數(shù)學(xué)主要講什么知識(shí)點(diǎn)
    高一數(shù)學(xué)主要講什么知識(shí)點(diǎn)

    我們不能坐等自己那天突然變成天才,而是要點(diǎn)燃自己的力量之火,尋找自己的天才之路,努力奮斗, 成功是要付出努力的,付出汗水,沒(méi)有能隨隨便便

  • 高一數(shù)學(xué)科必修知識(shí)點(diǎn)總結(jié)
    高一數(shù)學(xué)科必修知識(shí)點(diǎn)總結(jié)

    在學(xué)習(xí)的路途中還有有遠(yuǎn)大的理想,有明確的目標(biāo),堅(jiān)定的決心,這樣較大實(shí)地一步一個(gè)腳印的走向自己的目標(biāo)。實(shí)現(xiàn)自己的夢(mèng)想,不管在路途中遇到多大

  • 高一數(shù)學(xué)科必修必考知識(shí)點(diǎn)
    高一數(shù)學(xué)科必修必考知識(shí)點(diǎn)

    想在學(xué)習(xí)中獲得成功,也不是不是不可能的,只要我們能做到有永不言敗+勤奮學(xué)習(xí)+有遠(yuǎn)大的理想+堅(jiān)定的信念,堅(jiān)強(qiáng)的意志,明確地目標(biāo),而我想成功也是

  • 高一數(shù)學(xué)必修必學(xué)知識(shí)點(diǎn)
    高一數(shù)學(xué)必修必學(xué)知識(shí)點(diǎn)

    在我們獲得成功之后,還應(yīng)記得:勝不驕,要繼續(xù)努力,不要因?yàn)橐粫r(shí)的成功而得意忘形,這樣才不會(huì)使自己一步錯(cuò),步步錯(cuò),而遺憾終生。以下是小編給

1070053