學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)

時(shí)間: 燕純0 分享

想要提高高三數(shù)學(xué)成績(jī),首先要打好數(shù)學(xué)基礎(chǔ)知識(shí),只有這樣才能一步一步的慢慢把成績(jī)趕上去。接下來(lái)是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀,希望大家喜歡!

目錄

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問(wèn)題體現(xiàn)了一定的綜合性、靈活多樣性,對(duì)數(shù)學(xué)各部分知識(shí)融會(huì)貫通,起到了很好的促進(jìn)作用。在解決問(wèn)題時(shí),要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中。

諸如集合問(wèn)題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的值、最小值問(wèn)題,無(wú)一不與不等式有著密切的聯(lián)系,許多問(wèn)題,最終都可歸結(jié)為不等式的求解或證明。

知識(shí)整合

1。解不等式的核心問(wèn)題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對(duì)值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),相互轉(zhuǎn)化和相互變用。

3。在不等式的求解中,換元法和圖解法是常用的技巧之一,通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰。

4。證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語(yǔ)言特點(diǎn)。比較法的一般步驟是:作差(商)→變形→判斷符號(hào)(值)。

返回目錄

高三數(shù)學(xué)知識(shí)點(diǎn)

1、三類角的求法:

①找出或作出有關(guān)的角。

②證明其符合定義,并指出所求作的角。

③計(jì)算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面為正多邊形的直棱柱

正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

正棱錐的計(jì)算集中在四個(gè)直角三角形中:

3、怎樣判斷直線l與圓C的位置關(guān)系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時(shí),注意利用圓的“垂徑定理”。

4、對(duì)線性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

(1)欣賞數(shù)學(xué)的美感

比如幾何圖形中的對(duì)稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

(2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解.

學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

(3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。

(4)適當(dāng)看一些科普類的書籍和文章。

比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對(duì)此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

返回目錄

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開(kāi)方數(shù)大于等于零;

3、對(duì)數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調(diào)性法;

7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

返回目錄

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過(guò)兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);

(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

3、直線方程

點(diǎn)斜式:

直線斜率k,且過(guò)點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

返回目錄

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)相關(guān)文章:

高三年級(jí)數(shù)學(xué)會(huì)考知識(shí)點(diǎn)歸納

高三數(shù)學(xué)難點(diǎn)知識(shí)點(diǎn)總結(jié)大全

高中三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理

高三重要數(shù)學(xué)知識(shí)點(diǎn)梳理

高三數(shù)學(xué)專題復(fù)習(xí)知識(shí)點(diǎn)

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)第一輪復(fù)習(xí)知識(shí)點(diǎn)

高三文科數(shù)學(xué)常考知識(shí)點(diǎn)整理歸納

高三數(shù)學(xué)五大復(fù)習(xí)方法總結(jié)

高三數(shù)學(xué)知識(shí)點(diǎn)大全

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)

想要提高高三數(shù)學(xué)成績(jī),首先要打好數(shù)學(xué)基礎(chǔ)知識(shí),只有這樣才能一步一步的慢慢把成績(jī)趕上去。接下來(lái)是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀,希望大家喜歡!目錄高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)高三數(shù)學(xué)知識(shí)點(diǎn)高三年級(jí)數(shù)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
419986