高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析
只有讓學(xué)生不把全部時(shí)間都用在學(xué)習(xí)上,而留下許多自由支配的時(shí)間,他才能順利地學(xué)習(xí),這是教育過(guò)程的邏輯。學(xué)習(xí)知識(shí)要善于思考,思考,再思考。以下是小編給大家整理的高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn),希望能幫助到大家!
高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析1
變化前的點(diǎn)坐標(biāo)(x,y)
坐標(biāo)變化
變化后的點(diǎn)坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個(gè)單位長(zhǎng)度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個(gè)單位長(zhǎng)度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個(gè)單位長(zhǎng)度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個(gè)單位長(zhǎng)度伸長(zhǎng)橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大n(n>1)倍(x,ny)圖形被縱向拉長(zhǎng)為原來(lái)的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大n(n>1)倍(nx,y)圖形被橫向拉長(zhǎng)為原來(lái)的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(x,)圖形被縱向縮短為原來(lái)的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來(lái)的放大橫縱坐標(biāo)同時(shí)擴(kuò)大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉?lái)的n2倍縮小橫縱坐標(biāo)同時(shí)縮小n(n>1)倍(,)圖形變?yōu)樵瓉?lái)的
78、求與幾何圖形聯(lián)系的特殊點(diǎn)的坐標(biāo),往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長(zhǎng),再根據(jù)點(diǎn)所在的象限,醒上相應(yīng)的符號(hào)。求坐標(biāo)分兩種情況:(1)求交點(diǎn),如直線與直線的交點(diǎn);(2)求距離,再將距離換算成坐標(biāo),通常作x軸或y軸的垂線,再解直角三角形。
高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析2
一、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
結(jié)構(gòu)特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側(cè)棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側(cè)面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側(cè)面均是三角形;
(2)各側(cè)面有一個(gè)公共頂點(diǎn).
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱臺(tái)
(1)兩底面相互平行;(2)是用一個(gè)平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺(tái)
(1)兩底面相互平行;
(2)是用一個(gè)平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點(diǎn)的距離相等;(2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.
二、簡(jiǎn)單組合體的結(jié)構(gòu)特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):
①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
五、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h'為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:
高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析3
一次函數(shù)的定義
一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。
函數(shù)的表示方法
列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。
一次函數(shù)的性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù)
注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
a)k不為0
b)x的指數(shù)是1
c)b取任意實(shí)數(shù)
一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個(gè)單位長(zhǎng)度得到。(當(dāng)b>0時(shí),向上平移;b<0時(shí),向下平移)
高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析4
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2.寫出點(diǎn)M的集合;
3.列出方程=0;
4.化簡(jiǎn)方程為最簡(jiǎn)形式;
5.檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析相關(guān)文章:
★ 高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總
★ 高三數(shù)學(xué)基礎(chǔ)知識(shí)學(xué)習(xí)方法整理
★ 高三數(shù)學(xué)知識(shí)點(diǎn)歸納最新
★ 高三數(shù)學(xué)重要知識(shí)點(diǎn)整理
★ 高三數(shù)學(xué)知識(shí)點(diǎn)梳理
★ 高三數(shù)學(xué)知識(shí)考點(diǎn)整理集錦
★ 高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全
★ 高三數(shù)學(xué)復(fù)習(xí)方法整理歸納
★ 高三數(shù)學(xué)知識(shí)點(diǎn)大全
★ 高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法