學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學下學期知識點

時間: 贊銳0 分享

數(shù)學從知識點上來說60%的知識點在高二完成,需要有扎實的基礎(chǔ)知識作保障,難題是需要從基礎(chǔ)知識入手尋找突破點。做一定量的基礎(chǔ)知識題目題目,理解定理、定義和性質(zhì)的含義。下面是小編給大家?guī)淼?a href='http://zh056.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學下學期知識點,希望大家能夠喜歡!

高二數(shù)學下學期知識點1

極值的定義:

(1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)

(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。

極值的性質(zhì):

(1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;

(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;

(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;

(4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。

求函數(shù)f(x)的極值的步驟:

(1)確定函數(shù)的定義區(qū)間,求導數(shù)f′(x);

(2)求方程f′(x)=0的根;

(3)用函數(shù)的導數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負,則f(x)在這個根處無極值。

高二數(shù)學下學期知識點2

1.定義法:

判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。

2.轉(zhuǎn)換法:

當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3.集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

若A?B,則p是q的充分條件。

若A?B,則p是q的必要條件。

若A=B,則p是q的充要條件。

若A?B,且B?A,則p是q的既不充分也不必要條件。

高二數(shù)學下學期知識點3

一、定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時稱y是x的一次函數(shù)。

特別地,當b=0時,y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

2.當x=0時,b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

3.k,b與函數(shù)圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數(shù)的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達式。

五、一次函數(shù)在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

六、常用公式:(不全,希望有人補充)

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

高二數(shù)學下學期知識點相關(guān)文章

高二數(shù)學上下學期知識點復習提綱

高二數(shù)學下學期知識點總結(jié)

人教版高二數(shù)學下冊知識點歸納,人教版高二數(shù)學下冊知識點歸納

高二數(shù)學知識點歸納總結(jié)

高二數(shù)學知識點總結(jié)

高二數(shù)學知識點總結(jié)歸納

高二數(shù)學下冊知識點總結(jié)(2)

高二數(shù)學下冊期末考試知識點總結(jié)

高二數(shù)學知識點總結(jié)全

高二數(shù)學知識點必修

高二數(shù)學下學期知識點

數(shù)學從知識點上來說60%的知識點在高二完成,需要有扎實的基礎(chǔ)知識作保障,難題是需要從基礎(chǔ)知識入手尋找突破點。做一定量的基礎(chǔ)知識題目題目,理解定理、定義和性質(zhì)的含義。下面是小編給大家?guī)淼母叨?shù)學下學期
推薦度:
點擊下載文檔文檔為doc格式
1069552