高二數(shù)學(xué)必修二知識(shí)點(diǎn)
著眼于眼前,不要沉迷于玩樂(lè),不要沉迷于學(xué)習(xí)進(jìn)步?jīng)]有別_的痛苦中,進(jìn)步是一個(gè)由量變到質(zhì)變的過(guò)程,只有足夠的量變才會(huì)有質(zhì)變,沉迷于痛苦不會(huì)改變什么。小編為大家整理了高二數(shù)學(xué)必修二知識(shí)點(diǎn),希望對(duì)大家有所幫助!
高二數(shù)學(xué)必修二知識(shí)點(diǎn)1
基本概念
公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。
公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線。
公理3:過(guò)不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。
推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。
推論2:經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面。
推論3:經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。
空間兩直線的位置關(guān)系:
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面
【二】
1三視圖:
正視圖:從前往后側(cè)視圖:從左往右俯視圖:從上往下
2畫三視圖的原則:
長(zhǎng)對(duì)齊、高對(duì)齊、寬相等
3直觀圖:斜二測(cè)畫法
4斜二測(cè)畫法的步驟:
(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;
(2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;
(3).畫法要寫好。
5用斜二測(cè)畫法畫出長(zhǎng)方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖
高二數(shù)學(xué)必修二知識(shí)點(diǎn)2
平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2.加法與減法的代數(shù)運(yùn)算:
(1)若a=(x1,y1),b=(x2,y2)則ab=(x1+x2,y1+y2).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規(guī)律:+=+(交換律);+(+c)=(+)+c(結(jié)合律);
3.實(shí)數(shù)與向量的積:實(shí)數(shù)與向量的積是一個(gè)向量。
(1)||=||·||;
(2)當(dāng)a>0時(shí),與a的方向相同;當(dāng)a<0時(shí),與a的方向相反;當(dāng)a=0時(shí),a=0.
兩個(gè)向量共線的充要條件:
(1)向量b與非零向量共線的充要條件是有且僅有一個(gè)實(shí)數(shù),使得b=.
(2)若=(),b=()則‖b.
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù),,使得=e1+e2.
4.P分有向線段所成的比:
設(shè)P1、P2是直線上兩個(gè)點(diǎn),點(diǎn)P是上不同于P1、P2的任意一點(diǎn),則存在一個(gè)實(shí)數(shù)使=,叫做點(diǎn)P分有向線段所成的比。
當(dāng)點(diǎn)P在線段上時(shí),>0;當(dāng)點(diǎn)P在線段或的延長(zhǎng)線上時(shí),<0;
分點(diǎn)坐標(biāo)公式:若=;的坐標(biāo)分別為(),(),();則(≠-1),中點(diǎn)坐標(biāo)公式:.
5.向量的數(shù)量積:
(1).向量的夾角:
已知兩個(gè)非零向量與b,作=,=b,則∠AOB=()叫做向量與b的夾角。
(2).兩個(gè)向量的數(shù)量積:
已知兩個(gè)非零向量與b,它們的夾角為,則·b=||·|b|cos.
其中|b|cos稱為向量b在方向上的投影.
(3).向量的數(shù)量積的性質(zhì):
若=(),b=()則e·=·e=||cos(e為單位向量);
⊥b·b=0(,b為非零向量);||=;
cos==.
(4).向量的數(shù)量積的運(yùn)算律:
·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.
6.主要思想與方法:
本章主要樹(shù)立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問(wèn)題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來(lái)進(jìn)行綜合考查,是知識(shí)的交匯點(diǎn)。
高二數(shù)學(xué)必修二知識(shí)點(diǎn)3
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對(duì)于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也來(lái)源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
高二數(shù)學(xué)必修二知識(shí)點(diǎn)相關(guān)文章:
★ 高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)必修2空間幾何體知識(shí)點(diǎn)歸納總結(jié)
★ 高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱
★ 高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)填空題的常用解題方法與必修二知識(shí)點(diǎn)全面總結(jié)
★ 高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱