學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

八年級數(shù)學(xué)上冊對稱軸圖形的相關(guān)知識點總結(jié)

時間: 巧綿0 分享

今天小編為同學(xué)們整理分享的是關(guān)于人教版八年級數(shù)學(xué)上冊對稱軸圖形的相關(guān)知識點總結(jié),希望可以幫助到同學(xué)們更容易地學(xué)習(xí)圖形知識,接下來就讓我們一起來學(xué)習(xí)一下吧。

一、軸對稱圖形

1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點

3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系

4.軸對稱的性質(zhì)

①關(guān)于某直線對稱的兩個圖形是全等形。

②如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

③軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

④如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

二、線段的垂直平分線

1.經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

2.線段垂直平分線上的點與這條線段的兩個端點的距離相等

3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上

三、用坐標(biāo)表示軸對稱小結(jié)

1.在平面直角坐標(biāo)系中,關(guān)于x軸對稱的點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.

2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等

四、(等腰三角形)知識點回顧

1.等腰三角形的性質(zhì)

①.等腰三角形的兩個底角相等。(等邊對等角)

②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

五、(等邊三角形)知識點回顧

1.等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600。

2、等邊三角形的判定:

①三個角都相等的三角形是等邊三角形。

②有一個角是600的等腰三角形是等邊三角形。

3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

①、等腰三角形的性質(zhì)

定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

推論2:等邊三角形的各個角都相等,并且每個角都等于60°。

②、等腰三角形的其他性質(zhì):

(1)等腰直角三角形的兩個底角相等且等于45°

(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

(3)等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則

(4)等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=

③、等腰三角形的判定

等腰三角形的判定定理及推論:

定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。

推論1:三個角都相等的三角形是等邊三角形

推論2:有一個角是60°的等腰三角形是等邊三角形。

推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

④、三角形中的中位線

連接三角形兩邊中點的線段叫做三角形的中位線。

(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。

(2)要會區(qū)別三角形中線與中位線。

三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

三角形中位線定理的作用:

位置關(guān)系:可以證明兩條直線平行。

數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

常用結(jié)論:任一個三角形都有三條中位線,由此有:

結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。

結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

結(jié)論4:三角形一條中線和與它相交的中位線互相平分。

結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

八年級數(shù)學(xué)上冊對稱軸圖形的相關(guān)知識點總結(jié)相關(guān)文章

1.八年級上冊數(shù)學(xué)知識點總結(jié)

2.初二數(shù)學(xué)上冊知識點總結(jié)

3.人教版八年級數(shù)學(xué)上冊知識點總結(jié)

4.八年級上冊數(shù)學(xué)知識點總結(jié)

5.2017人教版八年級上冊數(shù)學(xué)知識點總結(jié)

6.人教版八年級數(shù)學(xué)上冊知識點總結(jié)

7.八年級數(shù)學(xué)知識點整理歸納

8.初二數(shù)學(xué)軸對稱的思維導(dǎo)圖

9.數(shù)學(xué)初二上冊知識點總結(jié)

10.八年級上冊數(shù)學(xué)知識點總結(jié)與八年級數(shù)學(xué)學(xué)習(xí)技巧

441128