學習啦 > 學習方法 > 通用學習方法 > 學習方法指導 > 小學生最新數(shù)學教學方法有哪些

小學生最新數(shù)學教學方法有哪些

時間: 鞏詩41231 分享

小學生最新數(shù)學教學方法有哪些

你是否為了孩子的數(shù)學成績焦頭爛額?掌握以下的數(shù)學教學方法,小學階段把握時機給孩子練好基本功,讓孩子爭做尖子生!
小學生最新數(shù)學方法

 1、對應思想方法

  對應是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學數(shù)學一般是一一對應的直觀圖表,并以此孕伏函數(shù)思想.如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應。

  2、假設思想方法

  假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當調整,最后找到正確答案的一種思想方法.假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。

  3、比較思想方法

  比較思想是數(shù)學中常見的思想方法之一,也是促進學生思維發(fā)展的手段.在教學分數(shù)應用題中,教師善于引導學生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學生較快地找到解題途徑。

  4、符號化思想方法

  用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學內容,這就是符號思想.如數(shù)學中各種數(shù)量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達大量的信息.如定律、公式、等。

  5、類比思想方法

  類比思想是指依據(jù)兩類數(shù)學對象的相似性,有可能將已知的一類數(shù)學對象的性質遷移到另一類數(shù)學對象上去的思想.如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式.類比思想不僅使數(shù)學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。

  6、轉化思想方法

  轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的.如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

  7、分類思想方法

  分類思想方法不是數(shù)學獨有的方法,數(shù)學的分類思想方法體現(xiàn)對數(shù)學對象的分類及其分類的標準.如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質數(shù)和合數(shù).又如三角形可以按邊分,也可以按角分.不同的分類標準就會有不同的分類結果,從而產生新的概念.對數(shù)學對象的正確、合理分類取決于分類標準的正確、合理性,數(shù)學知識的分類有助于學生對知識的梳理和建構。

  8、集合思想方法

  集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學問題或非純數(shù)學問題的思想方法.小學采用直觀手段,利用圖形和實物滲透集合思想.在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。

  9、數(shù)形結合思想方法

  數(shù)和形是數(shù)學研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學概念,復雜的數(shù)量關系,借助圖形使之直觀化、形象化、簡單化.另一方面復雜的形體可以用簡單的數(shù)量關系表示.在解應用題中常常借助線段圖的直觀幫助分析數(shù)量關系。

  10、統(tǒng)計思想方法:

  小學數(shù)學中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。

  11、極限思想方法:

  事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變.在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎上想象它們的極限狀態(tài),這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發(fā)了無限逼近的極限思想。

  12、代換思想方法:

  他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換.如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?

  13、可逆思想方法:

  它是邏輯思維中的基本思想,當順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推.如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。

  14、化歸思維方法:

  把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”.而數(shù)學知識聯(lián)系緊密,新知識往往是舊知識的引申和擴展.讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。

  15、變中抓不變的思想方法:

  在紛繁復雜的變化中如何把握數(shù)量關系,抓不變的量為突破口,往往問了就迎刃而解.如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?

  16、數(shù)學模型思想方法:

  所謂數(shù)學模型思想是指對于現(xiàn)實世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數(shù)學問題模型的一種思想方法.培養(yǎng)學生用數(shù)學的眼光認識和處理周圍事物或數(shù)學問題乃數(shù)學的最高境界,也是學生高數(shù)學素養(yǎng)所追求的目標。

  17、整體思想方法:

  對數(shù)學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
 

  18、談話法

  談話法又稱回答法,它是通過師生的交談來傳播和學習知識的一種方法。其特點是教師引導學生運用已有的經驗和知識回答教師提出的問題,借以獲得新知識或鞏固、檢查已學的知識。
 

  19、課堂討論法

  討論法是在教師指導下,由全班或小組圍繞某一種中心問題通過發(fā)表各自意見和看法,共同研討,相互啟發(fā),集思廣益地進行學習的一種方法。

     20、集合思想方法

  集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學問題或非純數(shù)學問題的思想方法.小學采用直觀手段,利用圖形和實物滲透集合思想.在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。

 

27605