學(xué)習(xí)啦 > 新聞資訊 > 考研 > 考研數(shù)學(xué)有哪些知識(shí)點(diǎn)易出證明題

考研數(shù)學(xué)有哪些知識(shí)點(diǎn)易出證明題

時(shí)間: 淑賢744 分享

考研數(shù)學(xué)有哪些知識(shí)點(diǎn)易出證明題

  考研數(shù)學(xué)復(fù)習(xí)中的定理證明是一直考生普遍感覺(jué)不太有把握的內(nèi)容。小編整理了易出證明題的知識(shí)點(diǎn),方便大家掌握好證明題的知識(shí)。下面就是學(xué)習(xí)啦小編給大家整理的考研數(shù)學(xué)易出證明題的知識(shí)點(diǎn),希望對(duì)你有用!

  考研數(shù)學(xué)易出證明題的知識(shí)點(diǎn)

  一、數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過(guò)好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

  二、微分中值定理的相關(guān)證明

  微分中值定理的證明題歷來(lái)是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識(shí)面廣,涉及到中值的等式主要是三類定理:

  1.零點(diǎn)定理和介質(zhì)定理;

  2.微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來(lái)處理高階導(dǎo)數(shù)的相關(guān)問(wèn)題,考查頻率底,所以以前兩個(gè)定理為主。

  3.微分中值定理

  積分中值定理的作用是為了去掉積分符號(hào)。

  在考查的時(shí)候,一般會(huì)把三類定理兩兩結(jié)合起來(lái)進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

  三、方程根的問(wèn)題

  包括方程根唯一和方程根的個(gè)數(shù)的討論。

  四、不等式的證明

  五、定積分等式和不等式的證明

  主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

  六、積分與路徑無(wú)關(guān)的五個(gè)等價(jià)條件

  這一部分是數(shù)一的考試重點(diǎn),最近幾年沒(méi)設(shè)計(jì)到,所以要重點(diǎn)關(guān)注。

  考研數(shù)學(xué)證明題答題步驟

  ▶第一步:首先要記住零點(diǎn)存在定理,介值定理,中值定理、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過(guò)程,有時(shí)可以借助幾何意義去記憶。

  因?yàn)橹阑驹硎亲C明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒(méi)有證明第一步,即使求出了極限值也是不能得分的。

  因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問(wèn)題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來(lái)說(shuō),"單調(diào)性"與"有界性"都是很好驗(yàn)證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見(jiàn),更多的是要用到第二步。

  ▶第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。

  一個(gè)證明題,大多時(shí)候是能用其幾何意義來(lái)正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫(huà)出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。

  再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫(xiě)出推理過(guò)程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無(wú)法完滿解決問(wèn)題的話,轉(zhuǎn)第三步。

  ▶第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為"逆推"。

  如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問(wèn)題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。

  在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號(hào)與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號(hào)就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號(hào)判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號(hào)判定原來(lái)函數(shù)的單調(diào)性,從而得所要證的結(jié)果。

  考研數(shù)學(xué)證明題經(jīng)典解題技巧

  1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

  知道基本原理是證明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒(méi)有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問(wèn)題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來(lái)說(shuō),“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  2.借助幾何意義尋求證明思路

  一個(gè)證明題,大多時(shí)候是能用其幾何意義來(lái)正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫(huà)出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn) (正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及 y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫(xiě)出推理過(guò)程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無(wú)法完滿解決問(wèn)題的話,轉(zhuǎn)第三步。

  3.逆推法

  從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問(wèn)題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號(hào)與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號(hào)就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所 舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號(hào)判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號(hào)判定原來(lái)函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè) F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

  對(duì)于那些經(jīng)常使用如上方法的考生來(lái)說(shuō),利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對(duì)于從心理上就不自信能解決證明題的考生來(lái)說(shuō),卻常常輕易丟失12分,后一部分同學(xué)請(qǐng)按“證明三步走”來(lái)建立自信心,以阻止考試分?jǐn)?shù)的白白流失。


猜你喜歡:

1.考研數(shù)學(xué)各題型高頻失分點(diǎn)有哪些

2.考研數(shù)學(xué)如何才能利用好歷年真題

3.考研數(shù)學(xué)大題作如何拿高分的技巧

4.2018考研數(shù)學(xué)做題規(guī)律

5.2018考研數(shù)學(xué)選擇題做題方法

6.2018考研數(shù)學(xué)做題技巧

3789289