高二數(shù)學(xué)整體知識(shí)總結(jié)_高中數(shù)學(xué)基本知識(shí)點(diǎn)
高二數(shù)學(xué)整體知識(shí)總結(jié)_高中數(shù)學(xué)基本知識(shí)點(diǎn)
高中數(shù)學(xué)一直都是比較難的一項(xiàng)課程,為了更好的學(xué)習(xí)數(shù)學(xué),應(yīng)該掌握更多的數(shù)學(xué)知識(shí)。下面就讓學(xué)習(xí)啦小編給大家分享一些高二數(shù)學(xué)整體知識(shí)總結(jié)吧,希望能對(duì)你有幫助!
高二數(shù)學(xué)整體知識(shí)總結(jié)篇一
必修一:1、集合與函數(shù)的概念(這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線面角和面面角
這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22---27分
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
高二數(shù)學(xué)整體知識(shí)總結(jié)篇二
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量.物理學(xué)中又叫做矢量.如力、速度、加速度、位移就是向量.
向量可以用一條有向線段(帶有方向的線段)來(lái)表示,用有向線段的長(zhǎng)度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個(gè)小寫字母a,b,c表示,或用兩個(gè)大寫字母加表示(其中前面的字母為起點(diǎn),后面的字母為終點(diǎn))
(5)平行向量
方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共線向量.
若向量a、b平行,記作a∥b.
規(guī)定:0與任一向量平行.
(6)相等向量
長(zhǎng)度相等且方向相同的向量叫做相等向量.
①向量相等有兩個(gè)要素:一是長(zhǎng)度相等,二是方向相同,二者缺一不可.
?、谙蛄縜,b相等記作a=b.
?、哿阆蛄慷枷嗟?
?、苋魏蝺蓚€(gè)相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點(diǎn)無(wú)關(guān).
2.對(duì)于向量概念需注意
(1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的模可以比較大小.
(2)向量共線與表示它們的有向線段共線不同.向量共線時(shí),表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上.
(3)由向量相等的定義可知,對(duì)于一個(gè)向量,只要不改變它的大小和方向,它是可以任意平行移動(dòng)的,因此用有向線段表示向量時(shí),可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線上.
3.向量的運(yùn)算律
(1)交換律:α+β=β+α
(2)結(jié)合律:(α+β)+γ=α+(β+γ)
(3)數(shù)量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
高二數(shù)學(xué)整體知識(shí)總結(jié)篇三
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作dA。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N*或N+
整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
?、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜?lái)。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
?、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無(wú)序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
看了高二數(shù)學(xué)整體知識(shí)總結(jié)的人還看:
1.高二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
2.高二數(shù)學(xué)知識(shí)點(diǎn)及公式
3.高二數(shù)學(xué)重點(diǎn)知識(shí)
4.高二數(shù)學(xué)必修5等差數(shù)列知識(shí)點(diǎn)歸納