高中數(shù)學(xué)讀書(shū)筆記
你是不是也在找高中數(shù)學(xué)讀書(shū)筆記的資料,那就對(duì)了,小編精心整理這篇高中數(shù)學(xué)讀書(shū)筆記文章,應(yīng)該可以解答你的疑惑,更多高中數(shù)學(xué)讀書(shū)筆記相關(guān)的資料,可以右上角搜索。
高中數(shù)學(xué)讀書(shū)筆記精選篇1
自從我開(kāi)始接觸數(shù)學(xué)以來(lái),我一直對(duì)這門(mén)學(xué)科的深度和復(fù)雜性感到著迷。在我看來(lái),數(shù)學(xué)不僅是一種工具,更是一種思維方式,一種探索世界的方法。最近,我讀了一本名為《高中數(shù)學(xué)》的書(shū),讓我對(duì)數(shù)學(xué)有了更深的理解和認(rèn)識(shí)。
《高中數(shù)學(xué)》這本書(shū)旨在幫助高中生理解數(shù)學(xué)的基礎(chǔ)概念和原理,掌握解決數(shù)學(xué)問(wèn)題的基本方法。這本書(shū)的優(yōu)點(diǎn)在于它的清晰度和實(shí)用性。作者以清晰簡(jiǎn)潔的語(yǔ)言解釋了各種數(shù)學(xué)概念,并提供了實(shí)際案例來(lái)說(shuō)明如何運(yùn)用這些概念和原理。這種結(jié)合使我在理解數(shù)學(xué)的同時(shí),也能看到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。
閱讀這本書(shū)的過(guò)程中,我經(jīng)常思考如何將所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到現(xiàn)實(shí)生活中。比如,在學(xué)習(xí)函數(shù)時(shí),我意識(shí)到函數(shù)在描述自然現(xiàn)象和社會(huì)現(xiàn)象時(shí)的重要性。在學(xué)習(xí)幾何時(shí),我理解了空間思維的重要性,這對(duì)我在物理和化學(xué)的學(xué)習(xí)也有很大的幫助。這種將數(shù)學(xué)與現(xiàn)實(shí)世界聯(lián)系起來(lái)的方式,讓我對(duì)數(shù)學(xué)有了更深的理解和熱愛(ài)。
在閱讀這本書(shū)的過(guò)程中,我也發(fā)現(xiàn)了一些問(wèn)題。例如,在學(xué)習(xí)概率時(shí),我對(duì)于概率的定義和計(jì)算方法存在一些困惑。我意識(shí)到,我需要更深入地理解概率的本質(zhì),才能更好地掌握這一領(lǐng)域的知識(shí)。此外,我也發(fā)現(xiàn)自己在處理一些復(fù)雜的數(shù)學(xué)問(wèn)題時(shí),缺乏系統(tǒng)性和策略性。我需要更好地掌握一些數(shù)學(xué)方法和技巧,以提高我的解題效率。
總的來(lái)說(shuō),《高中數(shù)學(xué)》是一本很好的書(shū),它幫助我理解了數(shù)學(xué)的基礎(chǔ)知識(shí),也讓我看到了數(shù)學(xué)在實(shí)際生活中的應(yīng)用。但是,我也意識(shí)到自己在理解和應(yīng)用數(shù)學(xué)知識(shí)方面還存在不足。我相信,只要我不斷學(xué)習(xí)、不斷思考,我一定能夠更好地掌握數(shù)學(xué)這門(mén)美麗的語(yǔ)言。
高中數(shù)學(xué)讀書(shū)筆記精選篇2
讀書(shū)目的:高中數(shù)學(xué)是一門(mén)重要的學(xué)科,通過(guò)閱讀這本書(shū)可以了解數(shù)學(xué)在生活中的應(yīng)用以及數(shù)學(xué)的發(fā)展歷程,提高對(duì)數(shù)學(xué)的興趣和認(rèn)識(shí)。
主要內(nèi)容:
《數(shù)學(xué)之美》這本書(shū)介紹了數(shù)學(xué)在生活中的應(yīng)用以及數(shù)學(xué)的發(fā)展歷程。作者從多個(gè)角度闡述了數(shù)學(xué)在音樂(lè)、物理、計(jì)算機(jī)科學(xué)、經(jīng)濟(jì)學(xué)等方面的應(yīng)用。此外,書(shū)中還介紹了數(shù)學(xué)家們的趣聞?shì)W事和數(shù)學(xué)的歷史,讓讀者了解到數(shù)學(xué)的有趣之處。
閱讀體會(huì):
1.數(shù)學(xué)的應(yīng)用范圍非常廣泛,它已經(jīng)滲透到我們生活的方方面面。比如在計(jì)算機(jī)科學(xué)中,算法和數(shù)據(jù)結(jié)構(gòu)都離不開(kāi)數(shù)學(xué)的知識(shí)。在物理學(xué)中,物理學(xué)家們需要運(yùn)用數(shù)學(xué)知識(shí)來(lái)推導(dǎo)公式和解決物理問(wèn)題。在經(jīng)濟(jì)學(xué)中,數(shù)學(xué)模型也被廣泛應(yīng)用來(lái)分析和預(yù)測(cè)經(jīng)濟(jì)趨勢(shì)。
2.數(shù)學(xué)的發(fā)展歷程非常有趣。從古至今,數(shù)學(xué)家們不斷地探索和發(fā)現(xiàn)新的數(shù)學(xué)理論和概念。比如,古希臘的數(shù)學(xué)家們研究了各種幾何形狀的性質(zhì)和關(guān)系,奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ)。在中國(guó),古代的算術(shù)和代數(shù)也有著悠久的歷史和豐富的成果。
3.通過(guò)閱讀這本書(shū),我對(duì)高中數(shù)學(xué)的印象有了很大的改觀。原來(lái)覺(jué)得枯燥無(wú)味的數(shù)學(xué)知識(shí),在實(shí)踐中卻有著廣泛的應(yīng)用。比如,在學(xué)習(xí)微積分時(shí),我了解到微積分在計(jì)算機(jī)科學(xué)中有著重要的地位,它可以幫助我們更好地理解和處理數(shù)據(jù)。
總結(jié):
《數(shù)學(xué)之美》這本書(shū)讓我對(duì)高中數(shù)學(xué)有了更深刻的認(rèn)識(shí)和理解。它讓我意識(shí)到數(shù)學(xué)并不僅僅是一門(mén)抽象的學(xué)科,而是一個(gè)與我們生活息息相關(guān)的實(shí)用工具。通過(guò)閱讀這本書(shū),我對(duì)數(shù)學(xué)的學(xué)習(xí)產(chǎn)生了濃厚的興趣,并且也激發(fā)了我探索更多數(shù)學(xué)知識(shí)的好奇心。我相信在今后的學(xué)習(xí)和工作中,我會(huì)更加注重應(yīng)用數(shù)學(xué)知識(shí),并不斷挑戰(zhàn)自己的數(shù)學(xué)極限。
高中數(shù)學(xué)讀書(shū)筆記精選篇3
[標(biāo)題]:高中數(shù)學(xué)中的知識(shí)探索:一個(gè)有啟發(fā)性的閱讀旅程
[引言]:
當(dāng)我接觸到高中數(shù)學(xué)時(shí),我對(duì)這門(mén)學(xué)科的神秘感到驚訝。復(fù)雜的概念,如集合,函數(shù),統(tǒng)計(jì),幾何等,看起來(lái)就像是無(wú)盡的迷宮。但是,當(dāng)我開(kāi)始深入理解這些概念時(shí),我發(fā)現(xiàn)數(shù)學(xué)其實(shí)是一種工具,一種理解我們周?chē)澜绲墓ぞ?。?shù)學(xué)并不只是抽象的符號(hào)和公式,它是一種邏輯和推理的藝術(shù)。這篇讀書(shū)筆記,我將分享我對(duì)于高中數(shù)學(xué)的理解和學(xué)習(xí)的心得。
[主要內(nèi)容]:
1.基礎(chǔ)數(shù)學(xué)概念:在閱讀過(guò)程中,我意識(shí)到理解數(shù)學(xué)的基礎(chǔ)概念是理解復(fù)雜問(wèn)題的基礎(chǔ)。例如,在集合的學(xué)習(xí)中,我理解了什么是唯一性,什么是重復(fù),以及集合之間的交集和并集的概念。這些基礎(chǔ)概念為我提供了構(gòu)建更復(fù)雜數(shù)學(xué)模型的基礎(chǔ)。
2.函數(shù)的理解:函數(shù)是高中數(shù)學(xué)的核心部分,但是理解函數(shù)的概念和性質(zhì)對(duì)我來(lái)說(shuō)是一個(gè)挑戰(zhàn)。通過(guò)閱讀和理解函數(shù)的概念,我了解到函數(shù)是一種將自變量映射到因變量的工具。這種理解幫助我更好地理解了函數(shù)的應(yīng)用,如解析幾何和三角函數(shù)。
3.統(tǒng)計(jì)和概率的理解:在閱讀統(tǒng)計(jì)和概率的內(nèi)容時(shí),我了解到這些概念可以幫助我們理解和預(yù)測(cè)不確定性。例如,通過(guò)學(xué)習(xí)平均值和標(biāo)準(zhǔn)差的概念,我可以更好地理解一組數(shù)據(jù)的中心趨勢(shì)和離散程度。通過(guò)學(xué)習(xí)概率論,我可以理解和分析事件發(fā)生的可能性。
4.幾何的理解:幾何學(xué)是一個(gè)有趣的領(lǐng)域,它需要我們運(yùn)用空間想象力和邏輯推理能力。通過(guò)學(xué)習(xí)平面幾何和立體幾何,我學(xué)會(huì)了如何描述和繪制空間圖形,如何證明幾何定理,以及如何應(yīng)用幾何學(xué)解決實(shí)際問(wèn)題。
[個(gè)人觀點(diǎn)]:
對(duì)我來(lái)說(shuō),高中數(shù)學(xué)是一門(mén)既有挑戰(zhàn)又有樂(lè)趣的學(xué)科。雖然有時(shí)候我需要花費(fèi)大量的時(shí)間來(lái)理解某些概念,但是當(dāng)我最終掌握一個(gè)新概念時(shí),那種成就感是無(wú)與倫比的。我也發(fā)現(xiàn)數(shù)學(xué)在實(shí)際生活中有很多應(yīng)用,如金融、科學(xué)、工程、計(jì)算機(jī)科學(xué)等。
[結(jié)論]:
總的來(lái)說(shuō),高中數(shù)學(xué)是一門(mén)非常有價(jià)值的學(xué)科。它不僅教會(huì)我們?nèi)绾谓鉀Q問(wèn)題,還教會(huì)我們?nèi)绾嗡伎紗?wèn)題。通過(guò)深入學(xué)習(xí)數(shù)學(xué),我們可以更好地理解我們周?chē)氖澜?,更好地解決問(wèn)題,更好地應(yīng)用我們的知識(shí)。我相信,無(wú)論我們未來(lái)的職業(yè)是什么,數(shù)學(xué)都將是一個(gè)重要的工具和技能。
高中數(shù)學(xué)讀書(shū)筆記精選篇4
摘要:《高中數(shù)學(xué)必修課》是一本專(zhuān)為高中學(xué)生設(shè)計(jì)的數(shù)學(xué)教材,內(nèi)容涵蓋了高中數(shù)學(xué)的基礎(chǔ)知識(shí)和核心概念。本書(shū)旨在讓學(xué)生通過(guò)深入淺出的方式,理解數(shù)學(xué)的本質(zhì)和應(yīng)用,培養(yǎng)他們的數(shù)學(xué)思維和解決問(wèn)題的能力。
一、課程內(nèi)容及理解
《高中數(shù)學(xué)必修課》的內(nèi)容主要包括數(shù)與代數(shù)、幾何與拓?fù)洹⒏怕逝c統(tǒng)計(jì)三個(gè)部分。每個(gè)部分都以實(shí)際生活中的問(wèn)題為引導(dǎo),讓學(xué)生從實(shí)際問(wèn)題中理解抽象的數(shù)學(xué)概念。例如,在“數(shù)與代數(shù)”部分,作者以溫度計(jì)為例,解釋了代數(shù)的基本概念,讓學(xué)生理解了變量、函數(shù)等概念。
二、閱讀過(guò)程中的思考
在閱讀這本書(shū)的過(guò)程中,我最大的感受是數(shù)學(xué)并非單純的抽象概念和公式,而是與我們的日常生活息息相關(guān)。通過(guò)解決實(shí)際問(wèn)題,我逐漸理解了數(shù)學(xué)的本質(zhì)和應(yīng)用,這讓我對(duì)數(shù)學(xué)有了更深的理解和欣賞。
三、學(xué)到的數(shù)學(xué)方法和技巧
本書(shū)強(qiáng)調(diào)了理解數(shù)學(xué)概念的重要性,認(rèn)為只有深入理解概念,才能在實(shí)際應(yīng)用中靈活運(yùn)用。此外,書(shū)中還介紹了許多數(shù)學(xué)方法和技巧,如歸納法、反證法等,這些方法和技巧不僅能幫助我解決數(shù)學(xué)問(wèn)題,也讓我對(duì)數(shù)學(xué)有了更深入的理解。
四、個(gè)人應(yīng)用及總結(jié)
在日常生活中,我常常運(yùn)用數(shù)學(xué)方法和技巧來(lái)解決實(shí)際問(wèn)題。例如,在購(gòu)物時(shí),我運(yùn)用了概率統(tǒng)計(jì)的知識(shí)來(lái)計(jì)算最佳的購(gòu)物方案;在學(xué)習(xí)中,我運(yùn)用了代數(shù)和幾何的知識(shí)來(lái)解決復(fù)雜的問(wèn)題。通過(guò)這本書(shū)的學(xué)習(xí),我對(duì)數(shù)學(xué)有了更深的理解和欣賞,也更加熱愛(ài)這門(mén)學(xué)科。
五、其他建議和展望
對(duì)于這本書(shū),我認(rèn)為可以在課后增加一些習(xí)題和案例分析,以幫助讀者更好地理解和應(yīng)用所學(xué)知識(shí)。此外,我也建議在課程中加入一些數(shù)學(xué)史和數(shù)學(xué)文化的內(nèi)容,以激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣和熱情。
總的來(lái)說(shuō),《高中數(shù)學(xué)必修課》是一本很好的教材,它不僅幫助我理解了數(shù)學(xué)的基本概念和應(yīng)用,也讓我對(duì)數(shù)學(xué)有了更深的理解和欣賞。我相信這本書(shū)將對(duì)更多的人產(chǎn)生積極的影響,也會(huì)讓更多的人熱愛(ài)數(shù)學(xué)。
高中數(shù)學(xué)讀書(shū)筆記精選篇5
導(dǎo)語(yǔ):讀書(shū)筆記是大家平時(shí)在讀書(shū)時(shí)把自己的讀書(shū)心得,內(nèi)容鑒賞,探討主題,評(píng)論人物,以下是小編為大家整理的數(shù)學(xué)讀書(shū)筆記摘抄,歡迎大家閱讀與借鑒!
高中數(shù)學(xué)讀書(shū)筆記精選篇6
可在經(jīng)過(guò)短時(shí)間的高中數(shù)學(xué)學(xué)習(xí)后,通過(guò)調(diào)查問(wèn)卷的方式了解學(xué)生是如何進(jìn)行高中數(shù)學(xué)學(xué)習(xí)的,從中發(fā)現(xiàn)問(wèn)題并給予及時(shí)的指導(dǎo)。包括:課堂學(xué)習(xí)作筆記的指導(dǎo);學(xué)習(xí)新內(nèi)容的指導(dǎo);分析問(wèn)題的指導(dǎo);作業(yè)和課后的復(fù)習(xí)鞏固的指導(dǎo)等。指導(dǎo)學(xué)生堅(jiān)持整理課堂筆記,是知識(shí)系統(tǒng)劃,梳理知識(shí)的內(nèi)在聯(lián)系,使指系統(tǒng)化,同時(shí)也培養(yǎng)學(xué)生的歸納概括能力。
為做好上述幾個(gè)方面,一個(gè)優(yōu)秀的教師顯然還應(yīng)該具備系統(tǒng)扎實(shí)的專(zhuān)業(yè)知識(shí)、基本方法等,了解本學(xué)科的發(fā)展趨勢(shì)。不僅如此,教師只有不斷提升自己,才能拓寬知識(shí)面,教學(xué)中也才能夠運(yùn)用自如,課堂才會(huì)生動(dòng)有趣。另外,要成為一位優(yōu)秀的數(shù)學(xué)教師,還應(yīng)該具備以下幾個(gè)方面的能力:第一,優(yōu)秀高中數(shù)學(xué)教師對(duì)數(shù)學(xué)要有自己深刻的理解和思考,數(shù)學(xué)不只是枯燥無(wú)味的公式、定理等,而是我們認(rèn)識(shí)世界、分析問(wèn)題的思想方法。引導(dǎo)學(xué)生在生活中發(fā)現(xiàn)數(shù)學(xué)問(wèn)題并解決問(wèn)題,從中體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,增強(qiáng)學(xué)習(xí)的信心。第二:優(yōu)秀的高中數(shù)學(xué)教師無(wú)一例外的具有較強(qiáng)的數(shù)學(xué)基本功、教學(xué)基本功。他們數(shù)學(xué)知識(shí)熟練廣博,接替機(jī)槍多樣,使學(xué)生心目中的“難不倒”的老師。他們不僅善于學(xué)習(xí)總結(jié),更善于了解數(shù)學(xué)的發(fā)展近況,撲捉新信息 ,把握好重難點(diǎn),找準(zhǔn)問(wèn)題的關(guān)鍵。選擇恰當(dāng)?shù)姆绞皆O(shè)計(jì)數(shù)學(xué)問(wèn)題情景實(shí)施教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。第三:優(yōu)秀的高中數(shù)學(xué)教師會(huì)創(chuàng)造性地處理教材,是“用教材”而非“教教材”。他們會(huì)深刻領(lǐng)悟編寫(xiě)的意圖,聯(lián)系學(xué)生的實(shí)際,不斷補(bǔ)充相應(yīng)的內(nèi)容,勇于創(chuàng)新,或者開(kāi)展專(zhuān)題研究或小課題研究,更好地“用活教材”,從而創(chuàng)造性地開(kāi)展教學(xué)工作。
除此之外,他還提到一個(gè)優(yōu)秀高中數(shù)學(xué)教師還能夠評(píng)估學(xué)生的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。了解了初中的內(nèi)容還不夠,還要評(píng)估學(xué)生學(xué)習(xí)數(shù)學(xué)的能力,這一點(diǎn)并不全是與數(shù)學(xué)成績(jī)成正比。評(píng)估學(xué)生的認(rèn)知結(jié)構(gòu),可以為教學(xué)提供信息,確定怎樣的教學(xué)方法。也可以為數(shù)學(xué)學(xué)習(xí)提供診斷,找出影響學(xué)習(xí)質(zhì)量的原因。教師需充分調(diào)查了解學(xué)生已經(jīng)掌握的知識(shí)和技能,了解掌握的熟練程度,了解學(xué)生對(duì)數(shù)學(xué)思想方法的`理解程度,這樣才能設(shè)計(jì)出適合學(xué)生情況的教學(xué)活動(dòng),充分調(diào)動(dòng)學(xué)生原來(lái)的認(rèn)知結(jié)構(gòu)對(duì)新知識(shí)進(jìn)行“同化”和“順應(yīng)”,提高課堂效率。
總之,要想成為一位優(yōu)秀的高中數(shù)學(xué)教師的,必須擁有豐富的數(shù)學(xué)基礎(chǔ)知識(shí),結(jié)合當(dāng)前的可改精神,認(rèn)真領(lǐng)悟二期課該的精神,創(chuàng)造性地使用教材,盡可能因材施教,充分了解每一位學(xué)生的成長(zhǎng)環(huán)境和經(jīng)歷,發(fā)現(xiàn)學(xué)生的個(gè)性特長(zhǎng),充分發(fā)揮學(xué)生的主體性,讓他們體驗(yàn)數(shù)學(xué)解題的思維過(guò)程,抓住數(shù)學(xué)的本質(zhì),學(xué)會(huì)學(xué)習(xí)數(shù)學(xué)。何棋老師為高中數(shù)學(xué)老師的發(fā)展指明了方向,讓我明白了自己的不足,在競(jìng)爭(zhēng)愈來(lái)愈激烈的今天,我們會(huì)更加努力的!
高中數(shù)學(xué)讀書(shū)筆記精選篇7
一、選書(shū)理由
我就是數(shù)學(xué),這是一種何等的膽識(shí),這是一種何等的氣魄!
因而我堅(jiān)信,那這本書(shū)必定有它的匠心獨(dú)運(yùn)之處,于是我開(kāi)始翻閱此書(shū),尋找那份屬于華老師的“膽識(shí)”與“氣魄”。
二、博覽群書(shū)
這本書(shū)讀起來(lái),一點(diǎn)都不枯燥。我相信很大程度上是因?yàn)槿A老師豐厚的文學(xué)素養(yǎng)。
他在每篇隨筆中總能引用古今中外的名人名言,教育故事,是那樣的巧妙,那樣的廣泛。
《腦袋磕破后的笑聲》一文中,華老師竟然能把磕破的腦袋與一頂帽子合成一件難得的“教具”,與所教內(nèi)容《中括號(hào)》結(jié)合得天衣無(wú)縫。華老師在闡述如何去發(fā)現(xiàn)事物之間存在著微妙聯(lián)系的時(shí)候,引用了朱光潛先生在《談美》中的一句話“在意識(shí)中思索的東西應(yīng)該讓他在潛意識(shí)中醞釀一些時(shí)候才會(huì)成熟。功夫沒(méi)有錯(cuò)用的,你自己以為勞而不獲,但是你在潛意識(shí)中實(shí)在仍然于無(wú)形中收效果?!?/p>
“燈火闌珊處”的那人,如果不是“千百度”地有意識(shí)地尋,就不會(huì)有那份“驀然回首”的驚喜與回味!
這樣的`例子,不勝枚舉!由此可見(jiàn),華老師是讀了很多很多書(shū)的,而博覽群書(shū),似乎是每位名師成長(zhǎng)的共性!
華老師在書(shū)中也講到:一個(gè)教師不讀自己專(zhuān)業(yè)以外的書(shū),是不會(huì)把這個(gè)學(xué)科教得很好的;但是,如果他不經(jīng)常閱讀自己專(zhuān)業(yè)的書(shū),那么更是教不好這個(gè)學(xué)科的。
不由得捫心自問(wèn),今天,我讀書(shū)了嗎?
三、寶劍鋒從磨礪出,梅花香自苦寒來(lái)
“我的年歷上沒(méi)有星期天,沒(méi)有節(jié)假日,有的只是一天五六小時(shí)的睡眠。更深夜半,燭淚將盡,常常是和衣而睡。一覺(jué)醒來(lái),跑跑步,暖暖身子,繼續(xù)看書(shū)。熱鬧正月,人們打牌娛樂(lè),遍嘗山珍海味;我卻鉆進(jìn)宿舍,捧著書(shū)本,啃著饅頭,沉浸在教育教學(xué)的王國(guó)里?!?/p>
這是他對(duì)待事業(yè)的態(tài)度,反照我們身邊的一些人,平時(shí)有一點(diǎn)忙,就喊忙忙忙,有些許累,就喊累累累,有微苦,就好像苦不堪言,用種種不是理由的理由來(lái)欺騙自己,給自己的不思進(jìn)取尋找原因;對(duì)華老師除了佩服之外,我自愧不及他的萬(wàn)分之一。
寧?kù)o而致遠(yuǎn),一點(diǎn)沒(méi)錯(cuò)!在這個(gè)浮躁的社會(huì),我們往往會(huì)在誘惑中迷失自己,多一些寧?kù)o,少一些浮躁,尋找那份屬于靜的豐富,這樣,也許我們才可以走得更遠(yuǎn)。
四、課堂因差錯(cuò)而精彩
多少老師在上公開(kāi)課時(shí)候,希望孩子的回答永遠(yuǎn)是正確的,生怕孩子的回答有錯(cuò)誤。
“課堂因差錯(cuò)而精彩”,在華老師的課堂上被詮釋的淋漓盡致,而且華老師還有更深刻的理解,提倡“融錯(cuò)教學(xué)”。
華老師每接手一個(gè)新班,第一節(jié)課都會(huì)在黑板上板書(shū):“錯(cuò)得好!”。在書(shū)中,華老師告訴我們處理差錯(cuò)的方法:
1、冷靜地分析。對(duì)待學(xué)生出現(xiàn)的錯(cuò)誤,我們要好好的分析學(xué)生為什么會(huì)出現(xiàn)這樣的錯(cuò)誤,要多問(wèn)學(xué)生“你是怎樣想的”,然后把握其錯(cuò)誤的性質(zhì)和原因,對(duì)癥下藥。
2、恰當(dāng)?shù)卦u(píng)價(jià)。完全的錯(cuò)誤是不存在的,只是錯(cuò)誤的成分有多少,正確的成分又是多少。對(duì)待學(xué)生的錯(cuò)誤不要一棍子打死,重點(diǎn)應(yīng)放在分析差錯(cuò)中的正確方面和出現(xiàn)錯(cuò)誤的原因,先說(shuō)明哪些地方時(shí)對(duì)的,差錯(cuò)可能成為正確的先導(dǎo),它往往隱藏著正確的結(jié)論,學(xué)生差錯(cuò)大多是“差那么一點(diǎn)”、“拐個(gè)彎就對(duì)了”,就看我們老師是否愿意去開(kāi)啟。
3、靈活地糾正。一要相信學(xué)生有能力糾正自己的“偏差”;二要提高學(xué)生克服困難的信心;三要舍得花時(shí)間給學(xué)生思考的余地,多給學(xué)生一些自由呼吸的空間;四要期待學(xué)生自己走向成功,以理解的心去接近他們,以背后的手去幫助他們,以期待的目光去鼓勵(lì)他們。
華老師說(shuō),教師的智慧就是要善于從學(xué)生95%錯(cuò)誤的解答中發(fā)現(xiàn)那僅有的5%正確的東西,給予熱情的肯定,并積極加以引導(dǎo),讓學(xué)生以步步推到那95%的錯(cuò)誤。
為什么不在我的課堂上出現(xiàn)這些精彩的引導(dǎo)學(xué)生從錯(cuò)誤走向正確的教學(xué)過(guò)程呢?
其實(shí)這關(guān)系到執(zhí)教者對(duì)教材知識(shí)的理解,比如“角的度量”中,對(duì)量角的本質(zhì)是什么?老師自己是否清楚?自己都不知道,如何引導(dǎo)孩子清晰地認(rèn)識(shí)。由此,提高自己的學(xué)科水平是多么的重要和迫切。其次是,平時(shí)自己是否經(jīng)常思考?“有沒(méi)有想,會(huì)不會(huì)想,有沒(méi)有堅(jiān)持去想”華老師的話,精辟、深刻,讓人深思。
五、行動(dòng)起來(lái)
螢火蟲(chóng)比喻自己床前的臺(tái)燈:每晚工作到12點(diǎn),睡下后想到什么馬上開(kāi)燈記下,關(guān)燈再睡,再想到什么又開(kāi)燈記下……床頭燈就像螢火蟲(chóng)一閃一閃
樸實(shí)的一段話,卻又是很有氣魄的一段話,給了我不小的震撼。
可是,震撼過(guò)后呢?行動(dòng)在哪里?
不由想起上次張齊華老師的講座,有人問(wèn)他怎么寫(xiě)反思,他說(shuō)“你反思了嗎?如果你已經(jīng)開(kāi)始反思了,我想我無(wú)須回答你的問(wèn)題,如果你還沒(méi)有反思,我拒絕回答你的問(wèn)題”
很多時(shí)候,我們什么都不缺,唯一缺少的,便是那震撼過(guò)后的行動(dòng)!
高中數(shù)學(xué)讀書(shū)筆記精選篇8
喬丹·艾倫伯格,美國(guó)威斯康星大學(xué)數(shù)學(xué)系教授。他的文章主要發(fā)表在《連線》、《紐約時(shí)報(bào)》、《華盛頓郵報(bào)》、《華爾街日?qǐng)?bào)》、《波士頓環(huán)球報(bào)》等媒體上,他還為《石板》雜志寫(xiě)作“DotheMath”專(zhuān)欄文章,十分受歡迎。
內(nèi)容簡(jiǎn)介
如果你是一個(gè)有“數(shù)學(xué)焦慮癥”的人,你可能不會(huì)相信有一天你會(huì)愛(ài)上數(shù)學(xué)。原因在于,我們?cè)趯W(xué)校所學(xué)的數(shù)學(xué)知識(shí)看上去不過(guò)是一堆沉悶的規(guī)則、定律和公理,都是前人傳下來(lái)的,而且是不容置疑的。在《魔鬼數(shù)學(xué)》中,世界知名數(shù)學(xué)家喬丹·艾倫伯格告訴我們這樣的認(rèn)識(shí)是錯(cuò)誤的。數(shù)學(xué)與我們所做的每一件事都息息相關(guān),可以幫助我們洞見(jiàn)在混沌和嘈雜的表象之下日常生活的隱性結(jié)構(gòu)和秩序。數(shù)學(xué)是一門(mén)告訴我們“如何做才不會(huì)犯錯(cuò)”的科學(xué),是經(jīng)年累月的努力、爭(zhēng)論所錘煉出來(lái)的。
精彩分享
不是所有的線都是直線
隨著我們離圓越來(lái)越近,視野變得越來(lái)越小,到最后我們看到的弧線與直線已經(jīng)非常接近,幾乎沒(méi)有區(qū)別了。如果一只螞蟻在圓上爬行,它只能看到身邊很小的范圍,它會(huì)以為自己是在一條直線上爬行。在地球表面上生活的人也一樣,認(rèn)為自己位于一個(gè)平面之上(除非他非常聰明,知道觀察由遠(yuǎn)而近、逐漸從地平線上露出來(lái)的物體)。
人人都是胖子
計(jì)算積分或者進(jìn)行線性回歸,用計(jì)算機(jī)就能完成,但是,判斷所得結(jié)果是否有意義,或者判斷所采用的方法是否正確,則離不開(kāi)人的智慧。我們?cè)诮淌跀?shù)學(xué)時(shí),應(yīng)該告訴學(xué)生如何應(yīng)用人的智慧,否則,我們培養(yǎng)出來(lái)的學(xué)生從本質(zhì)上就會(huì)與微軟的Excel程序沒(méi)什么兩樣,而且反應(yīng)遲鈍、漏洞百出。
觸目驚心的數(shù)字游戲
從中我們可以看出,隨著硬幣的數(shù)量越來(lái)越多,正面朝上的概率明顯地向50%靠近,就好像被一把看不見(jiàn)的老虎鉗鉗住了一樣。計(jì)算機(jī)模擬也會(huì)產(chǎn)生同樣的結(jié)果。拋10枚硬幣,正面朝上的比例范圍為30%~90%;拋100枚,比例范圍縮小,變?yōu)?0%~60%;拋1000枚,比例范圍僅為46.2%~53.7%。在某個(gè)規(guī)則的作用下,這個(gè)比例越來(lái)越接近50%。這只不講情面、無(wú)法抗拒的“手”就是“大數(shù)定律”。大數(shù)定律不會(huì)對(duì)已經(jīng)發(fā)生的情況進(jìn)行平衡,而是利用新的.數(shù)據(jù)來(lái)削弱它的影響力,直至前面的結(jié)果從比例上看影響力非常小,可以忽略不計(jì)。這就是大數(shù)定律發(fā)生作用的原理。
祝你下一張彩票中大獎(jiǎng)
平行線有時(shí)似乎也會(huì)相交。想象一條鐵道在一覽無(wú)余的平地上向前延伸,你的視線也跟著向前移動(dòng),這時(shí)你會(huì)發(fā)現(xiàn),隨著距離地平線越來(lái)越近,那兩根鐵軌似乎逐漸融為一體(如果希望在頭腦中形成一幅生動(dòng)逼真的畫(huà)面,我們可以一邊聽(tīng)著鄉(xiāng)村音樂(lè)一邊想象,這樣效果會(huì)更好),這就是“透視現(xiàn)象”。我們的視野是二維的,如果我們希望在這個(gè)二維視野中描繪三維世界,那么有些東西必然會(huì)丟失。
所謂民意,純屬子虛烏有
數(shù)學(xué)是常識(shí)的衍生物,有的活動(dòng)雖然沒(méi)有被表示成一個(gè)方程式,或者被畫(huà)成一幅圖,卻同樣屬于數(shù)學(xué)活動(dòng)。例如,你會(huì)發(fā)現(xiàn)好的東西未必是更優(yōu)的選擇;在機(jī)會(huì)足夠多的情況下不可能的事情也會(huì)發(fā)生,并因此抵制住巴爾的摩股票經(jīng)紀(jì)人的誘惑;決策時(shí)不僅要考慮所有可能的未來(lái),還要考慮所有可能事件的影響,密切關(guān)注哪些事件可能發(fā)生、哪些事件不太可能發(fā)生;摒棄群體信念與個(gè)體信念應(yīng)當(dāng)遵循相同規(guī)則的認(rèn)識(shí);為認(rèn)知找到最佳的平衡點(diǎn),使直覺(jué)在形式主義推理鋪設(shè)的康莊大道上自由馳騁。你打算什么時(shí)候應(yīng)用你學(xué)到的數(shù)學(xué)知識(shí)呢?事實(shí)上,從你呱呱墜地開(kāi)始,你可能就一直在使用這些數(shù)學(xué)知識(shí)。從現(xiàn)在開(kāi)始,充分利用這些數(shù)學(xué)知識(shí)吧。
且行且思
艾倫伯格說(shuō),學(xué)校數(shù)學(xué)課的上計(jì)算題就像是職業(yè)足球選手為了鍛煉力量、速度、觀察力和柔韌性,必須在健身房里進(jìn)行枯燥的重復(fù)性訓(xùn)練一樣,確實(shí)必要,但不是數(shù)學(xué)的實(shí)質(zhì)。對(duì)于不想成為“職業(yè)數(shù)學(xué)選手”的一般人來(lái)說(shuō),比解答算式更重要的是用數(shù)學(xué)思維理解現(xiàn)實(shí)問(wèn)題。這不就是我們課堂追求的培養(yǎng)學(xué)生的數(shù)學(xué)核心素養(yǎng)嗎?數(shù)學(xué)是每一個(gè)孩子從求學(xué)開(kāi)始都必須要學(xué)習(xí)的主課,它教給孩子們的不應(yīng)只是冰冷的數(shù)學(xué)知識(shí),更重要是要教給學(xué)生用數(shù)學(xué)的眼光看待問(wèn)題、用數(shù)學(xué)的思想去思考問(wèn)題。小學(xué)數(shù)學(xué)課程的學(xué)習(xí)不只是為了升學(xué)考試,更是為了把數(shù)學(xué)本身的學(xué)科意義滲透到學(xué)生的思維品質(zhì),實(shí)踐操作,認(rèn)知情感當(dāng)中,提高學(xué)生的數(shù)學(xué)素養(yǎng)。所以,作為數(shù)學(xué)老師,除了教知識(shí),更要去思考如何培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng),特別是如何在課堂教學(xué)中體現(xiàn)與落實(shí)數(shù)學(xué)核心素養(yǎng)?;跀?shù)學(xué)核心素養(yǎng)的數(shù)學(xué)教學(xué),要求教師要更新觀念。培養(yǎng)并提升核心素養(yǎng),不能依賴(lài)模仿、記憶,更需要理解、感悟,需要主動(dòng)、自覺(jué),將“學(xué)生為本”的理念與教學(xué)實(shí)際有機(jī)結(jié)合。
高中數(shù)學(xué)讀書(shū)筆記精選篇9
今天,我們將從一系列公理開(kāi)始,從自然數(shù)的產(chǎn)生一直說(shuō)到實(shí)數(shù)理論的完善。你或許會(huì)對(duì)數(shù)學(xué)的“科學(xué)性”有一個(gè)新的認(rèn)識(shí)。注意,本文的很大一部分內(nèi)容并非直接來(lái)源《什么是數(shù)學(xué)》,這篇文章可以看作是《什么是數(shù)學(xué)》中有關(guān)章節(jié)的一個(gè)擴(kuò)展。
自然數(shù)是數(shù)學(xué)界中最自然的數(shù),它用來(lái)描述物體的個(gè)數(shù),再抽象一些就是集合的元素個(gè)數(shù)。在人類(lèi)文明的最早期,人們就已經(jīng)很自然地用到了自然數(shù)??梢哉f(shuō),自然數(shù)是天然產(chǎn)生的,其余的一切都是從自然數(shù)出發(fā)慢慢擴(kuò)展演變出來(lái)的。數(shù)學(xué)家Kronecker曾說(shuō)過(guò),上帝創(chuàng)造了自然數(shù),其余的一切皆是人的勞作。 (God made the natural numbers; all else is the work of man.)
隨著一些數(shù)學(xué)理論的發(fā)展,我們迫切地希望對(duì)自然數(shù)本身有一個(gè)數(shù)學(xué)描述。從邏輯上看,到底什么是自然數(shù)呢?歷史上對(duì)自然數(shù)的數(shù)學(xué)描述有過(guò)很多的嘗試。數(shù)學(xué)家Giuseppe Peano提出了一系列用于構(gòu)造自然數(shù)算術(shù)體系的公理,稱(chēng)為Peano公理。Peano公理認(rèn)為,自然數(shù)是一堆滿(mǎn)足以下五個(gè)條件的符號(hào):
1. 0是一個(gè)自然數(shù);
2.每個(gè)自然數(shù)a都有一個(gè)后繼自然數(shù),記作S(a);
3.不存在后繼為0的自然數(shù);
4.不同的自然數(shù)有不同的后繼。即若a≠b,則S(a)≠S(b);
5.如果一個(gè)自然數(shù)集合S包含0,并且集合中每一個(gè)數(shù)的后繼仍在集合S中,則所有自然數(shù)都在集合S中。(這保證了數(shù)學(xué)歸納法的正確性)
形象地說(shuō),這五條公理規(guī)定了自然數(shù)是一個(gè)以0開(kāi)頭的單向有序鏈表。
自然數(shù)的加法和乘法可以簡(jiǎn)單地使用遞歸的方法來(lái)定義,即對(duì)任意一個(gè)自然數(shù)a,有:
a + 0 = a
a + S(b) = S(a+b)
a · 0 = 0
a · S(b) = a + (a·b)
其它運(yùn)算可以借助加法和乘法來(lái)定義。例如,減法就是加法的逆運(yùn)算,除法就是乘法的逆運(yùn)算,“a≤b”的意思就是存在一個(gè)自然數(shù)c使得a+c=b。交換律、結(jié)合率和分配率這幾個(gè)基本性質(zhì)也可以從上面的定義出發(fā)推導(dǎo)出來(lái)。
Peano公理提出后,多數(shù)人認(rèn)為這足以定義出自然數(shù)的運(yùn)算,但Poincaré等人卻開(kāi)始質(zhì)疑Peano算術(shù)體系的相容性:是否有可能從這些定義出發(fā),經(jīng)過(guò)一系列嚴(yán)格的數(shù)學(xué)推導(dǎo),最后得出0=1之類(lèi)的荒謬結(jié)論?如果一系列公理可以推導(dǎo)出兩個(gè)互相矛盾的命題,我們就說(shuō)這個(gè)公理體系是不相容的。Hilbert的23個(gè)問(wèn)題中的第二個(gè)問(wèn)題就是問(wèn),能否證明Peano算術(shù)體系是相容的。這個(gè)問(wèn)題至今仍有爭(zhēng)議。
在數(shù)學(xué)發(fā)展史上,引進(jìn)負(fù)數(shù)的概念是一個(gè)重大的突破。我們希望當(dāng)a
(a-b) + (c-d) = (a+c) – (b+d)
(a-b) · (c-d) = (ac + bd) – (ad + bc)
我們可以非常自然地把上面的規(guī)則擴(kuò)展到a=b,符號(hào)(a-b)描述的是一個(gè)自然數(shù);如果a
生活中遇到的另一個(gè)問(wèn)題就是“不夠分”、“不夠除”一類(lèi)的情況。三個(gè)人分六個(gè)餅,一個(gè)人兩個(gè)餅;但要是三個(gè)人分五個(gè)餅咋辦?此時(shí),一種存在于兩個(gè)相鄰整數(shù)之間的數(shù)不可避免的產(chǎn)生了。為了更好地表述這種問(wèn)題,我們用一個(gè)符號(hào)a/b來(lái)表示b個(gè)單位的消費(fèi)者均分a個(gè)單位的物資。真正對(duì)數(shù)學(xué)發(fā)展起到?jīng)Q定性作用的一個(gè)步驟是把由兩個(gè)數(shù)構(gòu)成的符號(hào)a/b當(dāng)成一個(gè)數(shù)來(lái)看待,并且定義一套它所服從的運(yùn)算規(guī)則。借助“分餅”這類(lèi)生活經(jīng)驗(yàn),我們可以看出,對(duì)于整數(shù)a, b, c,有(ac)/(bc)=a/b,并且(a/b)+(c/d) = (ad+bc)/(bd), (a/b)·(c/d)=(ac)/(bd)。為了讓新的數(shù)能夠用于度量長(zhǎng)度、體積、質(zhì)量,這種定義是必要的。但在數(shù)學(xué)歷史上,數(shù)學(xué)家們經(jīng)過(guò)了很長(zhǎng)的時(shí)間才意識(shí)到:從邏輯上看,新的符號(hào)的運(yùn)算規(guī)則只是我們的定義,它是不能被“證明”的,沒(méi)有任何理由要求我們必須這么做。正如我們定義0的階乘是1一樣,這么做僅僅是為了讓排列數(shù)A(n,n)仍然有意義并且符合原有的運(yùn)算法則,但我們絕對(duì)不能“證明”出0!=1來(lái)。事實(shí)上,我們完全可以定義(a/b) + (c/d) = (a+c)/(b+d),它仍然滿(mǎn)足基本的算術(shù)規(guī)律;雖然在我們看來(lái),這種定義所導(dǎo)出的結(jié)果非常之荒謬,但沒(méi)有任何規(guī)定強(qiáng)制我們不能這么定義。只要與原來(lái)的公理和定義沒(méi)有沖突,這種定義也是允許的,它不過(guò)是一個(gè)不適用于度量這個(gè)世界的絕大多數(shù)物理量的、不被我們熟知和使用的、另一種新的算術(shù)體系罷了。
我們稱(chēng)所有形如a/b的數(shù)叫做有理數(shù)。有理數(shù)的出現(xiàn)讓整個(gè)數(shù)系變得更加完整,四則運(yùn)算在有理數(shù)的范圍內(nèi)是“封閉”的了,也就是說(shuō)有理數(shù)與有理數(shù)之間加、減、乘、除的結(jié)果還是有理數(shù),可以沒(méi)有限制地進(jìn)行下去。從這一角度來(lái)看,我們似乎不大可能再得到一個(gè)“在有理數(shù)之外”的數(shù)了。
當(dāng)我們的數(shù)系擴(kuò)展到有理數(shù)時(shí),整個(gè)數(shù)系還出現(xiàn)了一個(gè)本質(zhì)上的變化,這使我們更加相信數(shù)系的擴(kuò)展已經(jīng)到頭了。我們說(shuō),有理數(shù)在數(shù)軸上是“稠密”的,任何兩個(gè)有理數(shù)之間都有其它的有理數(shù)(比如它們倆的算術(shù)平均值)。事實(shí)上,在數(shù)軸上不管多么小的一段區(qū)間內(nèi),我們總能找到一個(gè)有理數(shù)(分母m足夠大時(shí),總有一個(gè)時(shí)刻1/m要比區(qū)間長(zhǎng)度小,此時(shí)該區(qū)間內(nèi)至少會(huì)出現(xiàn)一個(gè)分母為m的有理數(shù))。這就使得人們會(huì)理所當(dāng)然地認(rèn)為,有理數(shù)已經(jīng)完整地覆蓋了整個(gè)數(shù)軸,所有的數(shù)都可以表示成a/b的形式。
難以置信的是,這樣的數(shù)竟然不能覆蓋整個(gè)數(shù)軸;除了形如a/b的數(shù)以外,數(shù)軸上竟然還有其它的數(shù)!這是早期希臘數(shù)學(xué)最重要的發(fā)現(xiàn)之一。那時(shí),古希臘人證明了,不存在一個(gè)數(shù)a/b,使得其平方恰好等于2。平方之后等于2的數(shù)不是沒(méi)有(可以用二分法找出這個(gè)數(shù)),只是它不能表示成兩個(gè)整數(shù)之比罷了。用現(xiàn)在的話說(shuō)就是,根號(hào)2不是有理數(shù)。你可以在這里看到至少5種證明根號(hào)2不能表示成整數(shù)與整數(shù)之比的方法。根號(hào)2這種數(shù)并不是憑空想象出來(lái)的沒(méi)有實(shí)際意義的數(shù),從幾何上看它等于單位正方形的對(duì)角線長(zhǎng)。我們現(xiàn)有的數(shù)竟然無(wú)法表達(dá)出單位正方形的對(duì)角線長(zhǎng)這樣一個(gè)簡(jiǎn)單的物理量!因此,我們有必要把我們的數(shù)系再次進(jìn)行擴(kuò)展,使其能夠包含所有可能出現(xiàn)的量。我們把所有能寫(xiě)成整數(shù)或整數(shù)之比的數(shù)叫做“有理數(shù)”,而數(shù)軸上其它的數(shù)就叫做“無(wú)理數(shù)”。它們合在一起就是“實(shí)數(shù)”,代表了數(shù)軸上的每一個(gè)點(diǎn)。
其實(shí),構(gòu)造一個(gè)無(wú)理數(shù)遠(yuǎn)沒(méi)有那么復(fù)雜。我們可以非常輕易地構(gòu)造出一個(gè)無(wú)理數(shù),從而說(shuō)明無(wú)理數(shù)的存在性。把所有自然數(shù)串起來(lái)寫(xiě)在一起所得到的Champernowne常數(shù)0.12345678910111213141516…顯然是個(gè)無(wú)理數(shù)。考慮用試除法把有理數(shù)展開(kāi)成小數(shù)形式的過(guò)程,由于余數(shù)的值只有有限多種情況,某個(gè)時(shí)刻除出來(lái)的余數(shù)必然會(huì)與前面重復(fù),因此其結(jié)果必然是一個(gè)循環(huán)小數(shù);而Champernowne常數(shù)顯然不是一個(gè)循環(huán)小數(shù)(不管你宣稱(chēng)它的循環(huán)節(jié)是什么,我都可以構(gòu)造一個(gè)充分長(zhǎng)的數(shù)字串,使得你的循環(huán)節(jié)中的某個(gè)數(shù)字根本沒(méi)在串中出現(xiàn),并且顯然這個(gè)串將在Champernowne常數(shù)中出現(xiàn)無(wú)窮多次)。這個(gè)例子說(shuō)明,數(shù)軸上還存在有大量的無(wú)理數(shù),帶根號(hào)的數(shù)只占無(wú)理數(shù)中微不足道的一部分。這個(gè)例子還告訴我們,不是所有的無(wú)理數(shù)都像pi一樣可以用來(lái)測(cè)試人的記憶力和Geek程度。
在定義無(wú)理數(shù)的運(yùn)算法則中,我們?cè)俅斡龅搅吮疚拈_(kāi)頭介紹自然數(shù)時(shí)所面臨的問(wèn)題:究竟什么是無(wú)理數(shù)?無(wú)理數(shù)的運(yùn)算該如何定義?長(zhǎng)期以來(lái),數(shù)學(xué)家們一直受到這個(gè)問(wèn)題的困惑。19世紀(jì)中期,德國(guó)數(shù)學(xué)家Richard Dedekind提出了Dedekind分割,巧妙地定義了無(wú)理數(shù)的運(yùn)算,使實(shí)數(shù)理論得到了進(jìn)一步的完善。
在此之前,我們一直是用有序數(shù)對(duì)來(lái)定義一種新的數(shù),并定義出有序數(shù)對(duì)之間的等價(jià)關(guān)系和運(yùn)算法則。但Champernowne常數(shù)這種讓人無(wú)語(yǔ)的無(wú)理數(shù)的存在使得這種方法能繼續(xù)用于無(wú)理數(shù)的`定義的希望變得相當(dāng)渺茫。Dedekind不是用兩個(gè)或多個(gè)有理數(shù)的數(shù)組來(lái)定義無(wú)理數(shù),而是用全體有理數(shù)的一個(gè)分割來(lái)定義無(wú)理數(shù)。我們把全體有理數(shù)分成兩個(gè)集合A和B,使得A中的每一個(gè)元素都比B中的所有元素小。顯然,滿(mǎn)足這個(gè)條件的有理數(shù)分割有且僅有以下三種情況:
1. A中有一個(gè)最大的元素a。例如,定義A是所有小于等于1的有理數(shù),B是所有大于1的有理數(shù)。
2. B中有一個(gè)最小的元素b。例如,定義A是所有小于1的有理數(shù),B是所有大于等于1的有理數(shù)。
3. A中沒(méi)有最大的元素,且B中沒(méi)有最小的元素。例如,A由0、所有負(fù)有理數(shù)和所有平方后小于2的正有理數(shù)組成,B由所有平方后大于2的正有理數(shù)組成。每一次出現(xiàn)這種情況,我們就說(shuō)這個(gè)分割描述了一個(gè)無(wú)理數(shù)。
注意,“A中有最大元素a且B中有最小元素b”這一情況是不可能出現(xiàn)的,這將違背有理數(shù)的稠密性。a和b都是有理數(shù),它們之間一定存在其它的有理數(shù),而這些有理數(shù)既不屬于集合A,也不屬于集合B,因此不是一個(gè)分割。
為什么每一種情況3都描述了一個(gè)確定的無(wú)理數(shù)呢?其實(shí)這非常的形象。由于A里面沒(méi)有最大的元素,因此我們可以永不停息地從A里面取出越來(lái)越大的數(shù);同樣地,我們也可以不斷從B里面取出越來(lái)越小的數(shù)。這兩邊的數(shù)將越來(lái)越靠近,它們中間夾著的那段區(qū)間將越來(lái)越小,其極限就是數(shù)軸上的一個(gè)確定的點(diǎn),這個(gè)點(diǎn)大于所有A里的數(shù)且小于所有B里的數(shù)。但集合A和B已經(jīng)包含了所有的有理數(shù),因此這個(gè)極限一定是一個(gè)無(wú)理數(shù)。因此從本質(zhì)上看,Dedekind分割的實(shí)質(zhì)就是用一系列的有理數(shù)來(lái)逼近某個(gè)無(wú)理數(shù)。
你也許想到了,現(xiàn)在我們可以很自然地定義出無(wú)理數(shù)的運(yùn)算。我們把一個(gè)無(wú)理數(shù)所對(duì)應(yīng)的Dedekind分割記作(A,B),則兩個(gè)無(wú)理數(shù)(A,B)和(C,D)相加的結(jié)果就是(P,Q),其中集合P中的元素是由A中的每個(gè)元素與C中的每個(gè)元素相加而得到,余下的有理數(shù)則都屬于集合Q。我們也可以用類(lèi)似的辦法定義出無(wú)理數(shù)的乘法。另外,我們能夠很快地驗(yàn)證,引入無(wú)理數(shù)后我們的運(yùn)算仍然滿(mǎn)足交換律、結(jié)合率等基本規(guī)律,這里就不再多講了。
高中數(shù)學(xué)讀書(shū)筆記精選篇10
注重學(xué)生在數(shù)學(xué)課堂中情感態(tài)度的培養(yǎng)
學(xué)習(xí)了著名數(shù)學(xué)教育專(zhuān)家李光樹(shù)老師的《小學(xué)數(shù)學(xué)教學(xué)論》第一章《小學(xué)數(shù)學(xué)的教學(xué)思想》,我頗有感悟,現(xiàn)淺談一下自己的一點(diǎn)心得體會(huì)。
在數(shù)學(xué)課堂教學(xué)中,既需要注重學(xué)生知識(shí)、能力和培養(yǎng),又要注重學(xué)生情感態(tài)度的培養(yǎng)。應(yīng)該說(shuō),情感態(tài)度的培養(yǎng)比知識(shí)能力的培養(yǎng)更重要。小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)中明確提出:“培養(yǎng)孩子積極思考的態(tài)度,使孩子在學(xué)習(xí)過(guò)程中增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心,培養(yǎng)孩子學(xué)習(xí)數(shù)學(xué)的興趣?!蔽覐倪@幾句淺顯的話語(yǔ)中悟出了許多深刻的道理。
現(xiàn)代社會(huì)是一個(gè)知識(shí)經(jīng)濟(jì)爆炸的年代,社會(huì)對(duì)孩子的需求也越來(lái)越高,作為新一代的教師,我們不僅要培養(yǎng)出成績(jī)優(yōu)異的.孩子,而且要培養(yǎng)出具有自信心的良好心態(tài)的孩子。因?yàn)閷?shí)踐證明,良好的心態(tài)是成功的第一保障,現(xiàn)代兒童的心理問(wèn)題已經(jīng)給我們的教育提出了許多嚴(yán)峻的課題。因此,我認(rèn)為數(shù)學(xué)課堂上也要注重學(xué)生情感態(tài)度的培養(yǎng)。
在這個(gè)問(wèn)題上,我認(rèn)為可以從以下三個(gè)方面重點(diǎn)培養(yǎng),主要是積極主動(dòng)的參與意識(shí);學(xué)習(xí)數(shù)學(xué)的自信心;學(xué)習(xí)數(shù)學(xué)的興趣。仔細(xì)思考了一下這三個(gè)方面應(yīng)該是互相聯(lián)系、辨證統(tǒng)一的。有了積極主動(dòng)的參與意識(shí),自信心就慢慢培養(yǎng)了起來(lái),有了學(xué)習(xí)數(shù)學(xué)的自信心就有了學(xué)習(xí)數(shù)學(xué)的興趣,如何培養(yǎng)孩子這些方面的情感態(tài)度。
首先,在課堂上要充分體現(xiàn)以學(xué)生為主體,真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人,創(chuàng)設(shè)民主、和諧的課堂氛圍。在課堂上,教師不能以傳統(tǒng)填鴨式的方式教學(xué),要讓學(xué)生通過(guò)操作、實(shí)驗(yàn)、交流、討論等活動(dòng),自己經(jīng)歷知識(shí)的形成過(guò)程,自己總結(jié)出結(jié)論,充分體現(xiàn)學(xué)生自主學(xué)習(xí)、自主探索,這樣慢慢的培養(yǎng)起學(xué)生的自主參與意識(shí)。
其次,要多給孩子鼓勵(lì),多給孩子信心,任何孩子在成長(zhǎng)中都會(huì)犯這樣、那樣的錯(cuò)誤,在數(shù)學(xué)學(xué)習(xí)中也難免如此。這時(shí),老師不要一味地批評(píng),因?yàn)檫^(guò)度地批評(píng)會(huì)讓孩子失去信心,會(huì)讓孩子缺乏思考的勇氣,久而久之就會(huì)使孩子只學(xué)會(huì)接受,沒(méi)有自己的思考和思想,更談不上學(xué)習(xí)的自信心和興趣了。所以,我們?cè)诮虒W(xué)中應(yīng)該多以鼓勵(lì)為主,多給孩子一些信心,相信你的學(xué)生是最棒的。
最后,我認(rèn)為除了在思想、情感上多以積極的心態(tài)培養(yǎng)孩子外,還應(yīng)該給孩子們創(chuàng)設(shè)學(xué)習(xí)數(shù)學(xué)的良好氛圍,讓孩子們?cè)谝粋€(gè)喜歡數(shù)學(xué)的環(huán)境中學(xué)習(xí),受到熏染,培養(yǎng)孩子的興趣。
自信心是成功的第一步階梯,作為一個(gè)教師,有義務(wù)也有責(zé)任為這一步階梯奠基,要讓學(xué)校成為培養(yǎng)孩子自信心的搖籃,不要讓孩子的自信心被扼殺在了搖籃里。
我要努力讓自己的每節(jié)課既要注重學(xué)生知識(shí)能力的培養(yǎng),又要注重情感態(tài)度的培養(yǎng)。
高中數(shù)學(xué)讀書(shū)筆記精選篇11
由于傳統(tǒng)的數(shù)學(xué)教學(xué)過(guò)分注重機(jī)械的技能訓(xùn)練與抽象的邏輯推理,而忽視與生活實(shí)際的聯(lián)系,以致于使許多學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了枯燥無(wú)用、神秘難懂的印象,從而喪失學(xué)習(xí)的興趣和動(dòng)力。為此,我們必須摒棄過(guò)去“斬頭去尾燒中段”的做法,力求做到數(shù)學(xué)源于生活,并用于生活,讓學(xué)生感悟和體驗(yàn)到數(shù)學(xué)就在自己身邊,生活中處處要用到數(shù)學(xué),必須認(rèn)真學(xué)好數(shù)學(xué)。
㈠尋求知識(shí)背景激起學(xué)生內(nèi)需
小學(xué)數(shù)學(xué)中的許多概念、算理、法則等都可通過(guò)追根尋源找到其知識(shí)背景,教師在教學(xué)中要努力把數(shù)學(xué)知識(shí)向前延伸,尋求它的源頭,讓學(xué)生明白數(shù)學(xué)知識(shí)從何處產(chǎn)生,為什么會(huì)產(chǎn)生。
如:在教學(xué)“厘米”的認(rèn)識(shí)時(shí),一位教師讓學(xué)生選擇工具量一量課桌的長(zhǎng)度,結(jié)果學(xué)生中有的說(shuō)六支鉛筆長(zhǎng),有的說(shuō)五把尺長(zhǎng),有的說(shuō)有八支鋼筆長(zhǎng),也有的說(shuō)七個(gè)信封長(zhǎng)……這時(shí),教師再讓學(xué)生討論交流:為什么同樣的桌子量得的結(jié)果卻各不相同?你又有什么想法?這樣同學(xué)們就會(huì)深深地感悟到統(tǒng)一測(cè)量單位的`必須性。在此基礎(chǔ)上再來(lái)教學(xué)新知,學(xué)生就會(huì)產(chǎn)生一種內(nèi)在的學(xué)習(xí)動(dòng)力。
㈡利用生活原型幫助學(xué)生建構(gòu)
眾所周知,數(shù)學(xué)學(xué)科的抽象性與小學(xué)生以形象思維占優(yōu)勢(shì)的心理特征之間的矛盾,是造成許多學(xué)生被動(dòng)學(xué)習(xí)的主要原因之一。其實(shí),佷多抽象的數(shù)學(xué)知識(shí),只要教師善于從學(xué)生生活中尋找并合理利用它的“原型”進(jìn)行教學(xué),就能變抽象為形象,學(xué)生的學(xué)習(xí)也就能變被動(dòng)為主動(dòng),變怕學(xué)為樂(lè)學(xué)。
㈢用于現(xiàn)實(shí)生活領(lǐng)略數(shù)學(xué)風(fēng)采
在數(shù)學(xué)教學(xué)中,我們不僅要讓學(xué)生了解知識(shí)從哪里來(lái),更要讓學(xué)生知道往何處去,并能靈活運(yùn)用這些知識(shí)順利地解決“怎樣去”的問(wèn)題,這也是學(xué)生學(xué)習(xí)數(shù)學(xué)的最終目的和歸宿。例如:學(xué)習(xí)了“求平均數(shù)”這一知識(shí)后,便可讓學(xué)生圍繞“在唱歌等評(píng)比活動(dòng)中,各個(gè)評(píng)委給同一參賽者打的分不一樣,怎樣確定其最后得分?”等實(shí)際問(wèn)題思考并展開(kāi)討論;使學(xué)生通過(guò)數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用進(jìn)一步體味到數(shù)學(xué)的巨大魅力。
高中數(shù)學(xué)讀書(shū)筆記精選篇12
我剛開(kāi)始讀這本書(shū)的時(shí)候,書(shū)的目錄吸引了我,目錄分為六輯:第一輯課前慎思、第二輯課中求索、第三輯課后反思、第四輯聽(tīng)課隨想、第五輯評(píng)課心語(yǔ)、第六輯生活感悟。而每一輯的小標(biāo)題也深深的吸引著我繼續(xù)讀下去,如腦袋磕破后的笑聲、無(wú)意間的傷害、“下課啦”、會(huì)飛的課堂、手指尖上的智慧、風(fēng)景、像農(nóng)民種地那樣教書(shū)、站著的眼睛等等,看到這些標(biāo)題我產(chǎn)生了這樣的疑問(wèn):腦袋磕破了還能笑得出來(lái)?下課啦有什么好寫(xiě)的?眼睛還能站著?帶著這些疑問(wèn),我仔細(xì)閱讀了這本書(shū)。
這本書(shū)的字里行間流露出華老師對(duì)教育的深刻思考,全書(shū)的六大部分既有華老師的教,也有他對(duì)別的老師上課的評(píng);既有他教學(xué)實(shí)踐的反思,也有他對(duì)人生的感悟。這是一本值得我們?nèi)w數(shù)學(xué)教師閱讀的一本好書(shū)。
一、思考讓課堂精彩紛呈
他的課前慎思為課堂求索的成功奠定了基礎(chǔ)。例如:在教學(xué)“圓的`認(rèn)識(shí)”中,華老師有一個(gè)固定環(huán)節(jié):借橡皮。這個(gè)環(huán)節(jié)的設(shè)計(jì),華老師是經(jīng)過(guò)慎重思考的,他認(rèn)為借橡皮有兩點(diǎn)理由:
1、“沒(méi)有橡皮,下筆會(huì)更慎重?!爆F(xiàn)在的學(xué)生很浮躁,往往不肯靜下心來(lái)想好了再動(dòng)筆,常常是毛手毛腳,一看就動(dòng)筆,一動(dòng)筆就錯(cuò),一錯(cuò)就擦。寧?kù)o才能致遠(yuǎn),逼學(xué)生靜心思遠(yuǎn),對(duì)學(xué)生的成長(zhǎng)是有好處的。
2、“錯(cuò)了,也不白錯(cuò),抓住‘她’好好欣賞,看看能從中學(xué)到些什么!”學(xué)生在學(xué)習(xí)過(guò)程中出現(xiàn)錯(cuò)誤時(shí),學(xué)生和老師總是習(xí)慣地認(rèn)為是“粗心”。
其實(shí)學(xué)生做錯(cuò)一般都不是因?yàn)椤按中摹蓖且驗(yàn)楦兄⒓寄芎退季S的缺陷。這一環(huán)節(jié)的設(shè)計(jì)正是華老師課前慎思的結(jié)果。華老師在教學(xué)這一課之前回想起自己以前在黑板上畫(huà)圓時(shí),畫(huà)出的圓經(jīng)常不是很圓,于是趕緊擦掉重畫(huà)。為什么總是畫(huà)不圓呢?他發(fā)現(xiàn)要么是由于圓心滑動(dòng),要么是由于圓規(guī)兩腳距離的改變。他想:這不正突出了圓的特征嗎?為此,他備課時(shí)就計(jì)劃好,自己在黑板上畫(huà)的圓不標(biāo)準(zhǔn),不擦,而是和學(xué)生一起分析“為什么不圓?!彼伎迹簩W(xué)生不圓的作品該怎么把它們也利用起來(lái)呢?因此他就想到把學(xué)生的橡皮借過(guò)來(lái),讓他們沒(méi)法擦,不圓的作品也就保留下來(lái)了。再如:華老師為執(zhí)教“乘法的估算“一課搜集資料,看到一份”生活中的估算“教案,作者設(shè)計(jì)了這樣一個(gè)環(huán)節(jié):出示幾個(gè)例子,讓學(xué)生思考判斷結(jié)果是否正確,說(shuō)說(shuō)為什么?例1:三年級(jí)學(xué)生小梅每天從家走到學(xué)校,一般情況下,用10分鐘左右時(shí)間可走到學(xué)校。一天,數(shù)學(xué)老師問(wèn)她從家到學(xué)校大約有多遠(yuǎn),她思索了一會(huì)兒說(shuō):“也就2000多米吧?!崩?:媽媽在農(nóng)貿(mào)市場(chǎng)買(mǎi)了每千克8元8角的芒果4千克,攤主向她要37元2角錢(qián)。這里的例2正是華老師要搜尋的生活中的估算。在書(shū)寫(xiě)自己的教案時(shí),華老師想象課堂上學(xué)生會(huì)怎么回答“攤主多要了錢(qián)!每千克芒果8元8角,不足9元錢(qián),買(mǎi)4千克總共應(yīng)不到36元?!薄笆裁??攤主多要了錢(qián)?”華老師的心不由一驚:這不是在貶損攤主嗎?人應(yīng)該是互相尊重的!并且,如果上課班級(jí)的學(xué)生家長(zhǎng)正是個(gè)什么攤主,學(xué)生看到這道題心里會(huì)是什么滋味?如果改成“攤主少要了錢(qián)”那么媽媽會(huì)怎么做呢?這不是又可折射出媽媽的心地善良,為人誠(chéng)實(shí)嘛?因此,華老師設(shè)計(jì)了以下一段文字讓學(xué)生看過(guò)后評(píng)論:媽媽在農(nóng)貿(mào)市場(chǎng)買(mǎi)了每千克8元3角的芒果4千克,攤主向她要31元2角錢(qián)。這樣的課前思考值得我們學(xué)習(xí)。
高中數(shù)學(xué)讀書(shū)筆記精選篇13
上個(gè)周末,我閱讀了__老師的《我就是數(shù)學(xué)》。一開(kāi)始我被這霸氣的書(shū)名震撼了,一種好奇心油然而生。這究竟是個(gè)什么樣的老師? 為什么這么說(shuō)? 于是我迫不及待看完了這本書(shū)。結(jié)果我再次被震撼了,也被這樣一個(gè)愛(ài)數(shù)學(xué)、愛(ài)教育的人吸引了。感覺(jué)到華老師已經(jīng)全身心都投在了數(shù)學(xué)上,投在了教育上。華老師真的就是為數(shù)學(xué)而生。他真的就是數(shù)學(xué)。
通讀完了這本書(shū)后感覺(jué)好像得到了很多經(jīng)驗(yàn),感覺(jué)自己面對(duì)可愛(ài)的頑皮的小學(xué)生定能應(yīng)付自如了。可是當(dāng)我走進(jìn)課堂面對(duì)五《1》和五《2》班學(xué)生的那種渴望與好奇的眼睛時(shí)。心里真的有懂了,華老師的課之所以那樣精彩,很多都來(lái)自于他在課前的慎思,課前慎思不應(yīng)只是去背誦你要怎樣去說(shuō),而是要把自己的想法加進(jìn)去,每個(gè)班級(jí)的學(xué)情也不盡相同,只有聯(lián)系學(xué)生,聯(lián)系生活才能把每一節(jié)課準(zhǔn)備好。
同時(shí),華老師也十分注重課中的求索,就是一件小事,他也能從中受益。我認(rèn)為華老師的這一舉動(dòng),即顯示了對(duì)學(xué)生的尊重,又對(duì)學(xué)生起到了‘潤(rùn)物無(wú)聲’的教育,即顯示了一種精神,也顯示了教師的一種氣勢(shì)。所以我要學(xué)習(xí)這種無(wú)聲的教育,為自己修煉一堂人生之課。這樣才能更好的傳授生給學(xué)生知識(shí),才能更好地教學(xué)生如何做人。
在教學(xué)中,才能在與孩子交往的過(guò)程中找到接觸點(diǎn),尤其要站在兒童的角度去思考,畢竟他們只是孩子。從華老師那里學(xué)到了課堂上的差錯(cuò)可能成為正確的`‘先導(dǎo)’。善待差錯(cuò),感謝差錯(cuò)。他告訴我們不能忽視學(xué)生出現(xiàn)的問(wèn)題,課堂就是學(xué)生出錯(cuò)的地方,要冷靜地分析,恰當(dāng)?shù)卦u(píng)價(jià),靈活地糾正。華老師對(duì)于差錯(cuò)資源的有效利用,不僅保護(hù)了學(xué)生的學(xué)習(xí)積極性,還把‘陽(yáng)光心態(tài)’傳染給了我們,相信課堂因融錯(cuò)而精彩’! 我要學(xué)習(xí)華老師那種教師的智慧就是要善于從學(xué)生95%錯(cuò)誤的解答中發(fā)現(xiàn)那5%的正確的東西,給予熱情的肯定,并積極加以引導(dǎo),讓學(xué)生一步一步推到那95%的錯(cuò)誤。
最讓我值得學(xué)習(xí)的就是華老師的課后反思,學(xué)生的一個(gè)錯(cuò),一句話,都讓他思考良久。課后他都會(huì)回想每一個(gè)教學(xué)環(huán)節(jié),總結(jié)好的地方與不當(dāng)之處,尤其是反思后的再實(shí)踐,他認(rèn)為再實(shí)踐是對(duì)反思的檢驗(yàn)與進(jìn)一步反思的催生。當(dāng)我讀到這里時(shí),甚感慚愧。回顧自己幾十年的教學(xué),在這方面相差太遠(yuǎn)。如今面對(duì)新的環(huán)境,新的學(xué)生,我要重新定位,我相信自己,構(gòu)筑理想課堂的愿望將不再遙遠(yuǎn)。
讀完全書(shū),我被華老師對(duì)教育的深深熱愛(ài)所感動(dòng),被他靈活的智慧,淵博的學(xué)識(shí)所嘆服,被他對(duì)工作的負(fù)責(zé),對(duì)學(xué)生的尊重所敬佩。他已經(jīng)把自己看作了數(shù)學(xué)的代言人,教學(xué)的生命體。所以才會(huì)有‘我就是數(shù)學(xué)的宣言吧!
最后,我要引用華老師的話激勵(lì)自己:‘教育像農(nóng)業(yè)一樣需要信任,需要完善,需要耐心,需要期待,需要守望,教育是農(nóng)業(yè),不是工業(yè),更不是商業(yè),能像農(nóng)民種地那樣教書(shū),真好!
高中數(shù)學(xué)讀書(shū)筆記精選篇14
暑假讀了黃先明的《高中數(shù)學(xué)學(xué)習(xí)方法》。
首先,他告訴我們高中數(shù)學(xué)學(xué)習(xí)要注意以下三點(diǎn)。
一、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。重視課內(nèi)的學(xué)習(xí)效率,要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理與歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集。
三、調(diào)整心態(tài),正確對(duì)待考試。首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的.思路展開(kāi)。
其次,他將初中數(shù)學(xué)與高中數(shù)學(xué)進(jìn)行了比較。
1、知識(shí)差異。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣與引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。
2、學(xué)習(xí)方法的差異?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢(shì)思維,提倡創(chuàng)新思維與培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。
3、學(xué)生自學(xué)能力的差異。高中的知識(shí)面廣,知識(shí)全部要教師訓(xùn)練完高考中的習(xí)題類(lèi)型是不可能的,只有通過(guò)較少的、較典型的一兩道例題講解去融會(huì)貫通這一類(lèi)型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類(lèi)型習(xí)題的解法。
最重要的,是告訴了我們?nèi)绾谓⒑玫膶W(xué)習(xí)數(shù)學(xué)興趣。
(1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問(wèn),產(chǎn)生好奇心。
(2)聽(tīng)課中要配合老師講課,滿(mǎn)足感官的興奮性。聽(tīng)課中重點(diǎn)解決預(yù)習(xí)中疑問(wèn),把老師課堂的提問(wèn)、停頓、教具與模型的演示都視為欣賞音樂(lè),及時(shí)回答老師課堂提問(wèn),培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問(wèn)的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。
(3)思考問(wèn)題注意歸納,挖掘?qū)W習(xí)的潛力。
(4)聽(tīng)課中注意老師講解時(shí)的數(shù)學(xué)思想,多問(wèn)為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?
(5)把概念回歸自然。
總結(jié)起來(lái),高中數(shù)學(xué)學(xué)習(xí)就是要:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。
摘要:
本文簡(jiǎn)要介紹了《線性規(guī)劃——數(shù)學(xué)建模的基礎(chǔ)》這本書(shū),詳細(xì)描述了我對(duì)這本書(shū)的閱讀體驗(yàn)和思考,并對(duì)我從中學(xué)到的重要概念、方法和原理進(jìn)行了總結(jié)。
背景:
在閱讀《線性規(guī)劃——數(shù)學(xué)建模的基礎(chǔ)》這本書(shū)之前,我對(duì)線性規(guī)劃的理解僅限于其在經(jīng)濟(jì)學(xué)中的應(yīng)用,如資源分配和生產(chǎn)計(jì)劃。然而,這本書(shū)讓我了解到線性規(guī)劃是一種數(shù)學(xué)方法,可以用來(lái)解決各種實(shí)際問(wèn)題,包括但不限于交通路線規(guī)劃、最優(yōu)搜索策略、庫(kù)存管理、市場(chǎng)定價(jià)等。
深入理解:
本書(shū)強(qiáng)調(diào)了線性規(guī)劃的重要性和實(shí)用性,并通過(guò)具體的實(shí)例和模型解釋了線性規(guī)劃的基本概念、方法和應(yīng)用。在閱讀過(guò)程中,我深感線性規(guī)劃不僅僅是一種數(shù)學(xué)方法,更是一種解決問(wèn)題的方式。它要求我們用數(shù)學(xué)的方式去思考問(wèn)題,然后用數(shù)學(xué)的方法去解決它。這對(duì)我來(lái)說(shuō)是一個(gè)全新的視角,也讓我對(duì)數(shù)學(xué)有了更深的理解。
個(gè)人應(yīng)用:
在日常生活中,我意識(shí)到線性規(guī)劃的應(yīng)用無(wú)處不在。例如,在選擇交通路線時(shí),我可以運(yùn)用線性規(guī)劃的方法來(lái)找到最短路徑;在購(gòu)物時(shí),我可以運(yùn)用線性規(guī)劃的方法來(lái)制定最優(yōu)的購(gòu)物計(jì)劃;在制定工作計(jì)劃時(shí),我也可以考慮運(yùn)用線性規(guī)劃的方法來(lái)提高效率。這本書(shū)讓我看到了數(shù)學(xué)的應(yīng)用價(jià)值,也讓我更加熱愛(ài)數(shù)學(xué)。
總結(jié):
《線性規(guī)劃——數(shù)學(xué)建模的基礎(chǔ)》這本書(shū)讓我深刻理解了線性規(guī)劃的原理和應(yīng)用,也讓我看到了數(shù)學(xué)在解決實(shí)際問(wèn)題中的重要性。我相信,這種思維方式將會(huì)對(duì)我未來(lái)的學(xué)習(xí)和生活產(chǎn)生深遠(yuǎn)的影響。