學習啦>學習方法>各學科學習方法>數(shù)學學習方法>

八年級數(shù)學上學期知識點

時間: 維維0 分享

讀書,使人思維活躍,聰疑智慧;讀書,使人豁然貫通,柳暗花明;讀書,使人博學多識,學富五車;讀書,使人無憂無慮,回味無窮;讀書,使人思想查上翅膀,感情淀放花蕾。下面是小編為大家精心整理的八年級數(shù)學上學期知識點,希望對大家有所幫助。

八年級數(shù)學上學期知識點

一次函數(shù)

1、函數(shù)

一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

2、自變量取值范圍

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。

3、函數(shù)的三種表示法及其優(yōu)缺點

關系式(解析)法

兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。

列表法

把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。

圖象法

用圖象表示函數(shù)關系的方法叫做圖象法。

4、由函數(shù)關系式畫其圖像的一般步驟

列表:列表給出自變量與函數(shù)的一些對應值。

描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點。

連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

5、正比例函數(shù)和一次函數(shù)

①正比例函數(shù)和一次函數(shù)的概念

一般地,若兩個變量x,y間的關系可以表示成y=kx+b (k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

特別地,當一次函數(shù)y=kx+b中的b=0時(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。

②一次函數(shù)的圖像:

所有一次函數(shù)的圖像都是一條直線。

③一次函數(shù)、正比例函數(shù)圖像的主要特征

一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;

正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。

④正比例函數(shù)的性質(zhì)

一般地,正比例函數(shù) 有下列性質(zhì):

當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

當k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

⑤一次函數(shù)的性質(zhì)

一般地,一次函數(shù) 有下列性質(zhì):

當k>0時,y隨x的增大而增大;

當k<0時,y隨x的增大而減小。

⑥正比例函數(shù)和一次函數(shù)解析式的確定

確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k 不等于0)中的常數(shù)k。

確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k 不等于0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.

⑦一次函數(shù)與一元一次方程的關系

任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式.而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同.

結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當一次函數(shù)值為0時,求相應的自變量的值.

從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值.

八年級數(shù)學知識點

二元一次方程組

1、二元一次方程

①二元一次方程

含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。

②二元一次方程的解

適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

2、二元一次方程組

①含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

②二元一次方程組的解

二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

③二元一次方程組的解法

代入(消元)法

加減(消元)法

④一次函數(shù)與二元一次方程(組)的關系:

一次函數(shù)與二元一次方程的關系:

直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解

一次函數(shù)與二元一次方程組的關系:

二元一次方程組

的解可看作兩個一次函數(shù)

和的圖象的交點。

當函數(shù)圖象有交點時,說明相應的二元一次方程組有解;

當函數(shù)圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。

八年級數(shù)學上學期知識點梳理

數(shù)據(jù)的分析

1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù)

2、平均數(shù)

平均數(shù):一般地,對于n個數(shù),我們把它們的和與n之商叫做這n個數(shù)的算術平均數(shù),簡稱平均數(shù)。

加權(quán)平均數(shù)。

3、眾數(shù)

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

4、中位數(shù)

一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

八年級數(shù)學上學期知識點總結(jié)

平行線的證明

1、平行線的性質(zhì)

一般地,如果兩條線互相平行的直線被第三條直線所截,那么同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補.

也可以簡單的說成:

兩直線平行,同位角相等;

兩直線平行,內(nèi)錯角相等;

兩直線平行,同旁內(nèi)角互補。

2、判定平行線

兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.

也可以簡單說成:

同位角相等兩直線平行

兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果同旁內(nèi)角互補,那么這兩條直線平行.

其他兩條可以簡單說成:

內(nèi)錯角相等兩直線平行

同旁內(nèi)角相等兩直線平行

八年級數(shù)學上學期知識點相關文章

八年級上冊數(shù)學的知識點歸納

初二數(shù)學上冊知識點

初二數(shù)學上冊知識點總結(jié)歸納

部編版八年級數(shù)學上冊知識點

初二數(shù)學知識點上冊主要內(nèi)容

數(shù)學八年級上冊知識點

初二數(shù)學上冊知識點總結(jié)

初二數(shù)學知識點上冊

八年級數(shù)學上冊教學大綱范文3篇

八年級數(shù)學知識點梳理總結(jié)

637807