學習啦 > 學習方法 > 各學科學習方法 > 數(shù)學學習方法 >

最新七年級數(shù)學上冊知識點

時間: 維維24594 分享

數(shù)學透過抽象化和邏輯推理的使用,由計數(shù)、計算、量度和對物體形狀及運動的觀察而產(chǎn)生。今天小編在這給大家整理了一些七年級數(shù)學上冊知識點,我們一起來看看吧!

最新七年級數(shù)學上冊知識點

七年級數(shù)學上冊知識點

第一章有理數(shù)

1.1正數(shù)與負數(shù)

①正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)

②負數(shù):在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)。與正數(shù)具有相反意義。

③0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是的中性數(shù)。

注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等

1.2有理數(shù)

1、有理數(shù)(1)整數(shù):正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);(2)分數(shù);正分數(shù)和負分數(shù)統(tǒng)稱分數(shù);(3)有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。

2、數(shù)軸(1)定義:通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;

(2)數(shù)軸三要素:原點、正方向、單位長度;

(3)原點:在直線上任取一個點表示數(shù)0,這個點叫做原點;

(4)數(shù)軸上的點和有理數(shù)的關系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。

3、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)

4、絕對值:(1)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點間的距離。

(2)一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

兩個負數(shù),絕對值大的反而小。

1.3有理數(shù)的加減法

①有理數(shù)加法法則:

1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。

2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。

3、一個數(shù)同0相加,仍得這個數(shù)。

加法的交換律和結(jié)合律

②有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。

1.4有理數(shù)的乘除法

①有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;

任何數(shù)同0相乘,都得0;

乘積是1的兩個數(shù)互為倒數(shù)。

乘法交換律/結(jié)合律/分配律

②有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);

兩數(shù)相除,同號得正,異號得負,并把絕對值相除;

0除以任何一個不等于0的數(shù),都得0。

1.5有理數(shù)的乘方

1、求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪。在a的n次方中,a叫做底數(shù),n叫做

指數(shù)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

2、有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

3、把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法,注意a的范圍為1≤a<10。

4、從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。四舍五入遵從精確到哪一位就從這一位的下一位開始,而不是從數(shù)字的末尾往前四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55.

第二章整式的加減

2.1整式

1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù).單項式指的是數(shù)或字母的積的代數(shù)式.單獨一個數(shù)或一個字母也是單項式.因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.

2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和.

4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式.每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里ab是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質(zhì)符號.

5、它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單項式和多項式的每一項都包括它前面的符號。

6、單項式和多項式統(tǒng)稱為整式。

2.2整式的加減

1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關。

2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類項與系數(shù)大小、字母的排列順序無關

3、合并同類項:把多項式中的同類項合并成一項??梢赃\用交換律,結(jié)合律和分配律。

4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

6、整式加減的一般步驟:

一去、二找、三合

(1)如果遇到括號按去括號法則先去括號.(2)結(jié)合同類項.(3)合并同類項

第三章一元一次方程

3.1一元一次方程

1、方程是含有未知數(shù)的等式。

2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。注意:判斷一個方程是否是一元一次方程要抓住三點:

1)未知數(shù)所在的式子是整式(方程是整式方程);

2)化簡后方程中只含有一個未知數(shù);

3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.

3、解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。

4、等式的性質(zhì):1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;

2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注意0這個數(shù).

3.2、3.3解一元一次方程

在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用.因此在解方程時還要注意以下幾點:

①去分母:在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;

②去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;③移項:把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號)移項要變號;

④合并同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

⑤系數(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。

3.4實際問題與一元一次方程

一.概念梳理

⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關

數(shù)量關系;②設出未知數(shù)(注意單位);③根據(jù)相等關系列

出方程;④解這個方程;⑤檢驗并寫出答案(包括單位名稱)。

⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。

二、思想方法(本單元常用到的數(shù)學思想方法小結(jié))

⑴建模思想:通過對實際問題中的數(shù)量關系的分析,抽象成數(shù)學模型,建立一元一次方程的思想.⑵方程思想:用方程解決實際問題的思想就是方程思想.

⑶化歸思想:解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、未知

數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最

后逐步把方程轉(zhuǎn)化為x=a的形式.體現(xiàn)了化“未知”為“已知”的化歸思想.

⑷數(shù)形結(jié)合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關系,使問題中的

數(shù)量關系很直觀地展示出來,體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.

⑸分類思想:在解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方

案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

三、數(shù)學思想方法的學習

1.解一元一次方程時,要明確每一步過程都作什么變形,應該注意什么問題.

2.尋找實際問題的數(shù)量關系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.

3.列方程(\)解應用題的檢驗包括兩個方面:⑴檢驗求得的結(jié)果是不是方程的解;

⑵是要判斷方程的解是否符合題目中的實際意義.

如何學好數(shù)學

作好課前預習,掌握聽課主動權

“凡事預則主,不預則廢”。課堂就是戰(zhàn)場,學習就是戰(zhàn)爭,不能打無準備的仗。如果第二天有數(shù)學課,第一天就要進行充分準備。一方面要通讀教材中的相關內(nèi)容,看看哪些是懂得的,是已經(jīng)學過的知識;哪些是不懂的,是要通過老師講解才能理解的新知識。把不懂的部分標注清楚,進行初步思考,把需要解決的問題提出來。另一方面還要對教材后邊的習題初做一遍,把不會做的題做上記號,一起帶到課堂去解決。

專心聽講,做好課堂筆記

聽課要提前進入狀態(tài)。課前準備的好壞,直接影響聽課的效果。正式上課鈴聲未響,老師尚未走進教室之前,就該把有關的課本(包括筆記本,練習本)和文具事先擺放在桌面上,等待老師的到來。不要指望老師站在講臺上等大家慢慢翻箱倒柜,找這找那。老師進入教室,就應該帶著預習過程中需要解決的問題,專心聽講。還要掌握老師講課的規(guī)律,圍繞老師講課質(zhì)點,積極思考,踴躍回答老師提出的問題。

及時復習,把知識轉(zhuǎn)化為技能

復習是學習過程的重要環(huán)節(jié)。復習時,要再次閱讀教材,回想當天所學的內(nèi)容,追憶老師講課的過程,再現(xiàn)課堂所學的知識,讀懂老師已講的例題,(這些例題通常對完成作業(yè)有較強的啟發(fā)和示范作用),理解和記憶基本的定義、定理、公式、法則(這些就是必須掌握的知識點)。當天及時復習,能夠減少知識遺忘,易于鞏固和記憶。

數(shù)學的學習方法

1、養(yǎng)成良好的學習數(shù)學習慣。 建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。高中數(shù)學的良好習慣應是:多質(zhì)疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面。

2、及時了解、掌握常用的數(shù)學思想和方法,學好高中數(shù)學,需要我們從數(shù)學思想與方法高度來掌握它。中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。

3、逐步形成 “以我為主”的學習模式 數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學就要積極主動地參與學習過程,養(yǎng)成實事求是的科學態(tài)度,獨立思考、勇于探索的創(chuàng)新精神。

4、記數(shù)學筆記,特別是對概念理解的不同側(cè)面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。


最新七年級數(shù)學上冊知識點相關文章:

初一數(shù)學上冊知識點大全

初一數(shù)學上冊知識點梳理

七年級數(shù)學上冊知識歸納

初一上冊數(shù)學重點知識點歸納總結(jié)

初一數(shù)學上冊知識點歸納

七年級數(shù)學上冊知識點大全

七年級數(shù)學上冊知識點總結(jié)第一章

七年級數(shù)學的知識點歸納總結(jié)

初一數(shù)學知識點上冊

599013