學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 小學(xué)學(xué)習(xí)方法 > 六年級方法 > 六年級數(shù)學(xué) > 小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答

小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答

時間: 慧良1230 分享

小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答

  小升初是特別關(guān)鍵的一個時期,無論從信息還是自身的學(xué)習(xí)方面都要做好充分的準(zhǔn)備。小編整理了小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答內(nèi)容,希望能幫助到您。

  小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答

  1、分?jǐn)?shù)百分?jǐn)?shù)問題,比和比例:

  這是六年級的重點(diǎn)內(nèi)容,在歷年各個學(xué)校測試中所占比例非常高,重點(diǎn)應(yīng)該掌握好以下內(nèi)容:

  對單位1的正確理解,知道甲比乙多百分之幾和乙比甲少百分之幾的區(qū)別;

  求單位1的正確方法,用具體的量去除以對應(yīng)的分率,找到對應(yīng)關(guān)系是重點(diǎn);

  分?jǐn)?shù)比和整數(shù)比的轉(zhuǎn)化,了解正比和反比關(guān)系;

  通過對“份數(shù)”的理解結(jié)合比例解決和倍(按比例分配)和差倍問題;

  2、行程問題:

  應(yīng)用題里最重要的內(nèi)容,因為綜合考察了學(xué)生比例,方程的運(yùn)用以及分析復(fù)雜問題的能力,所以常常作為壓軸題出現(xiàn),重點(diǎn)應(yīng)該掌握以下內(nèi)容:

  路程速度時間三個量之間的比例關(guān)系,即當(dāng)路程一定時,速度與時間成反比;速度一定時,路程與時間成正比;時間一定時,速度與路程成正比。特別需要強(qiáng)調(diào)的是在很多題目中一定要先去找到這個“一定”的量;

  當(dāng)三個量均不相等時,學(xué)會通過其中兩個量的比例關(guān)系求第三個量的比;

  學(xué)會用比例的方法分析解決一般的行程問題;

  有了以上基礎(chǔ),進(jìn)一步加強(qiáng)多次相遇追及問題及火車過橋流水行船等特殊行程問題的理解,重點(diǎn)是學(xué)會如何去分析一個復(fù)雜的題目,而不是一味的做題。

  3、幾何問題:

  幾何問題是各個學(xué)??疾斓闹攸c(diǎn)內(nèi)容,分為平面幾何和立體幾何兩大塊,具體的平面幾何里分為直線形問題和圓與扇形;立體幾何里分為表面積和體積兩大部分內(nèi)容。學(xué)生應(yīng)重點(diǎn)掌握以下內(nèi)容:

  等積變換及面積中比例的應(yīng)用;

  與圓和扇形的周長面積相關(guān)的幾何問題,處理不規(guī)則圖形問題的相關(guān)方法;

  立體圖形面積:染色問題、切面問題、投影法、切挖問題;

  立體圖形體積:簡單體積求解、體積變換、浸泡問題。

  4、數(shù)論問題:

  ??純?nèi)容,而且可以應(yīng)用于策略問題,數(shù)字謎問題,計算問題等其他專題中,相當(dāng)重要,應(yīng)重點(diǎn)掌握以下內(nèi)容:

  掌握被特殊整數(shù)整除的性質(zhì),如數(shù)字和能被9整除的整數(shù)一定是9的倍數(shù)等;

  最好了解其中的道理,因為這個方法可以用在許多題目中,包括一些數(shù)字謎問題;

  掌握約數(shù)倍數(shù)的性質(zhì),會用分解質(zhì)因數(shù)法,短除法,輾轉(zhuǎn)相除法求兩個數(shù)的最大公因數(shù)和最小公倍數(shù);

  學(xué)會求約數(shù)個數(shù)的方法,為了提高靈活運(yùn)用的能力,需了解這個方法的原理;

  了解同余的概念,學(xué)會把余數(shù)問題轉(zhuǎn)化成整除問題,下面的這個性質(zhì)是非常有用的:兩個數(shù)被第三個數(shù)去除,如果所得的余數(shù)相同,那么這兩個數(shù)的差就能被這個數(shù)整除;

  能夠解決求一個多位數(shù)除以一個較小的自然數(shù)所得的余數(shù)問題,例如求1011121314…9899除以11的余數(shù),以及求20082008除以13的余數(shù)這類問題。

  5、計算問題:

  計算問題通常在前幾個題目中出現(xiàn)概率較高,主要考察兩個方面,一個是基本的四則運(yùn)算能力,同時,一些速算巧算及裂項換元等技巧也經(jīng)常成為考察的重點(diǎn)。我們應(yīng)該重點(diǎn)掌握以下內(nèi)容:

  計算基本功的訓(xùn)練;

  利用乘法分配率進(jìn)行速算與巧算;

  分小數(shù)互化及運(yùn)算,繁分?jǐn)?shù)運(yùn)算;

  估算與比較;

  計算公式應(yīng)用。如等差數(shù)列求和,平方差公式等;

  裂項,換元與通項公式。

  34個小學(xué)數(shù)學(xué)必考公式

  1、和差倍問題:

和差問題

和倍問題

差倍問題

已知條件

幾個數(shù)的和與差

幾個數(shù)的和與倍數(shù)

幾個數(shù)的差與倍數(shù)

公式適用范圍

已知兩個數(shù)的和,差,倍數(shù)關(guān)系

公式

①(和-差)÷2=較小數(shù)

較小數(shù)+差=較大數(shù)

和-較小數(shù)=較大數(shù)

②(和+差)÷2=較大數(shù)

較大數(shù)-差=較小數(shù)

和-較大數(shù)=較小數(shù)

和÷(倍數(shù)+1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

和-小數(shù)=大數(shù)

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

小數(shù)+差=大數(shù)

關(guān)鍵問題

求出同一條件下的

和與差

和與倍數(shù)

差與倍數(shù)

  2、年齡問題的三個基本特征:

  ①兩個人的年齡差是不變的;

 ?、趦蓚€人的年齡是同時增加或者同時減少的;

 ?、蹆蓚€人的年齡的倍數(shù)是發(fā)生變化的;

  3、歸一問題的基本特點(diǎn):

  問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。

  關(guān)鍵問題:

  根據(jù)題目中的條件確定并求出單一量;

  4、植樹問題:

基本類型

在直線或者不封閉的曲線上植樹,兩端都植樹

在直線或者不封閉的曲線上植樹,兩端都不植樹

在直線或者不封閉的曲線上植樹,只有一端植樹

封閉曲線上植樹

基本公式

棵數(shù)=段數(shù)+1

棵距×段數(shù)=總長

棵數(shù)=段數(shù)-1

棵距×段數(shù)=總長

棵數(shù)=段數(shù)

棵距×段數(shù)=總長

關(guān)鍵問題

確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系

  5、雞兔同籠問題:

  基本概念:

  雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;

  基本思路:

 ?、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

  ②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;

 ?、勖總€事物造成的差侍定的,從而找出出現(xiàn)這個差的原因;

 ?、茉俑鶕?jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。

  基本公式:

 ?、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))

 ?、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))

  關(guān)鍵問題:找出總量的差與單位量的差。

  6、盈虧問題:

  基本概念:

  一定量的對象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭俊?/p>

  基本思路:

  先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量。

  基本題型:

 ?、僖淮斡杏鄶?shù),另一次不足;

  基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差

  ②當(dāng)兩次都有余數(shù);

  基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差

 ?、郛?dāng)兩次都不足;

  基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差

  基本特點(diǎn):

  對象總量和總的組數(shù)是不變的。

  關(guān)鍵問題:

  確定對象總量和總的組數(shù)。

  7、牛吃草問題:

  基本思路:

  假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。

  基本特點(diǎn):

  原草量和新草生長速度是不變的;

  關(guān)鍵問題:

  確定兩個不變的量。

  基本公式:

  生長量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);

  總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量;

  8、周期循環(huán)與數(shù)表規(guī)律:

  周期現(xiàn)象:

  事物在運(yùn)動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。

  周期:

  我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。

  關(guān)鍵問題:

  確定循環(huán)周期。

  閏 年:一年有366天;

 ?、倌攴菽鼙?整除;②如果年份能被100整除,則年份必須能被400整除;

  平 年:一年有365天。

 ?、倌攴莶荒鼙?整除;②如果年份能被100整除,但不能被400整除;

  9、平均數(shù):

  基本公式:

  ①平均數(shù)=總數(shù)量÷總份數(shù)

  總數(shù)量=平均數(shù)×總份數(shù)

  總份數(shù)=總數(shù)量÷平均數(shù)

 ?、谄骄鶖?shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)

  基本算法:

  ①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計算.

 ?、诨鶞?zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②

  10、抽屜原理:

  抽屜原則一:

  如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。

  例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:

 ?、?=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

  觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點(diǎn):總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。

  抽屜原則二:

  如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:

  ①k=[n/m ]+1個物體:當(dāng)n不能被m整除時。

  ②k=n/m個物體:當(dāng)n能被m整除時。

  理解知識點(diǎn):

  [X]表示不超過X的最大整數(shù)。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  關(guān)鍵問題:

  構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。

  11、定義新運(yùn)算:

  基本概念:

  定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。

  基本思路:

  嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。

  關(guān)鍵問題:

  正確理解定義的運(yùn)算符號的意義。

  注意事項:

 ?、傩碌倪\(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。

  ②每個新定義的運(yùn)算符號只能在本題中使用。

  12、數(shù)列求和:

  等差數(shù)列:

  在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:

  首項:等差數(shù)列的第一個數(shù),一般用a1表示;

  項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

  基本思路:

  等差數(shù)列中涉及五個量:a1 ,an, d, n,sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:

  通項公式:an = a1+(n-1)d;

  通項=首項+(項數(shù)一1)×公差;

  數(shù)列和公式:sn,= (a1+ an)×n÷2;

  數(shù)列和=(首項+末項)×項數(shù)÷2;

  項數(shù)公式:n= (an+ a1)÷d+1;

  項數(shù)=(末項-首項)÷公差+1;

  公差公式:d =(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數(shù)-1);

  關(guān)鍵問題:

  確定已知量和未知量,確定使用的公式;

  13、二進(jìn)制及其應(yīng)用:

  十進(jìn)制:

  用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

  =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

  注意:N0=1;N1=N(其中N是任意自然數(shù))

  二進(jìn)制:

  用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。

  (2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

  +……+A3×22+A2×21+A1×20

  注意:An不是0就是1。

  十進(jìn)制化成二進(jìn)制:

 ?、俑鶕?jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。

 ?、谙日页霾淮笥谠摂?shù)的2的n次方,再求它們的差,再找不大于這個差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。

  14、加法乘法原理和幾何計數(shù):

  加法原理:

  如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。

  關(guān)鍵問題:

  確定工作的分類方法。

  基本特征:

  每一種方法都可完成任務(wù)。

  乘法原理:

  如果完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。

  關(guān)鍵問題:

  確定工作的完成步驟。

  基本特征:

  每一步只能完成任務(wù)的一部分。

  直線:

  一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動,形成的軌跡。

  直線特點(diǎn):

  沒有端點(diǎn),沒有長度。

  線段:

  直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。

  線段特點(diǎn):

  有兩個端點(diǎn),有長度。

  射線:

  把直線的一端無限延長。

  射線特點(diǎn):

  只有一個端點(diǎn);沒有長度。

 ?、贁?shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);

 ?、跀?shù)芥律=1+2+3+…+(射線數(shù)一1);

 ?、蹟?shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):

 ?、軘?shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)

  15、質(zhì)數(shù)與合數(shù):

  質(zhì)數(shù):

  一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。

  合數(shù):

  一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。

  質(zhì)因數(shù):

  如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。

  分解質(zhì)因數(shù):

  把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。

  分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:

  N= ,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1

  求約數(shù)個數(shù)的公式:

  P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質(zhì)數(shù):

  如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。

  16、約數(shù)與倍數(shù):

  約數(shù)和倍數(shù):

  若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

  公約數(shù):

  幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。

  最大公約數(shù)的性質(zhì):

  1、 幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。

  2、 幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。

  3、 幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。

  4、 幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。

  例如:12的約數(shù)有1、2、3、4、6、12;

  18的約數(shù)有:1、2、3、6、9、18;

  那么12和18的公約數(shù)有:1、2、3、6;

  那么12和18最大的公約數(shù)是:6,記作(12,18)=6;

  求最大公約數(shù)基本方法:

  1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。

  2、短除法:先找公有的約數(shù),然后相乘。

  3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。

  公倍數(shù):

  幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。

  12的倍數(shù)有:12、24、36、48……;

  18的倍數(shù)有:18、36、54、72……;

  那么12和18的公倍數(shù)有:36、72、108……;

  那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

  最小公倍數(shù)的性質(zhì):

  1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

  2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。

  求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

  17、數(shù)的整除:

  基本概念和符號:

  1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

  2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;

  整除判斷方法:

  1.能被2、5整除:末位上的數(shù)字能被2、5整除。

  2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

  3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。

  4.能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。

  5.能被7整除:

 ?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。

 ?、谥鸫稳サ糇詈笠晃粩?shù)字并減去末位數(shù)字的2倍后能被7整除。

  6.能被11整除:

 ?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。

 ?、谄鏀?shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

 ?、壑鸫稳サ糇詈笠晃粩?shù)字并減去末位數(shù)字后能被11整除。

  7.能被13整除:

 ?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。

 ?、谥鸫稳サ糇詈笠晃粩?shù)字并減去末位數(shù)字的9倍后能被13整除。

  整除的性質(zhì):

  1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。

  3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

  18、余數(shù)及其應(yīng)用:

  基本概念:

  對任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0

  余數(shù)的性質(zhì):

  ①余數(shù)小于除數(shù)。

  ②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。

 ?、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

 ?、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。

  19、余數(shù)、同余與周期:

  同余的定義:

 ?、偃魞蓚€整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。

 ?、谝阎齻€整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。

  同余的性質(zhì):

 ?、僮陨硇裕篴≡a(mod m);

  ②對稱性:若a≡b(mod m),則b≡a(mod m);

  ③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);

 ?、芎筒钚裕喝鬭≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);

 ?、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);

 ?、咄缎?若a≡ b(mod m),整數(shù)c,則a×c≡ b×c(mod m×c);

  關(guān)于乘方的預(yù)備知識:

 ?、偃鬉=a×b,則MA=Ma×b=(Ma)b

 ?、谌鬊=c+d則MB=Mc+d=Mc×Md

  被3、9、11除后的余數(shù)特征:

 ?、僖粋€自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3);

 ?、谝粋€自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);

  費(fèi)爾馬小定理:

  如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。

  20、分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用:

  基本概念與性質(zhì):

  分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

  分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

  分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

  百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。

  常用方法:

 ?、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。

 ?、趯?yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。

 ?、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。

  ④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。

 ?、萘坎蛔兯季S方法:在變化的各個量當(dāng)中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。

  ⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。

  ⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。

 ?、酀舛扰浔确ǎ阂话銘?yīng)用于總量和分量都發(fā)生變化的狀況。

  21、分?jǐn)?shù)大小的比較:

  基本方法:

 ?、偻ǚ址肿臃ǎ菏顾蟹?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。

 ?、谕ǚ址帜阜ǎ菏顾蟹?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。

 ?、刍鶞?zhǔn)數(shù)法:確定一個標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。

 ?、芊肿雍头帜复笮”容^法:當(dāng)分子和分母的差一定時,分子或分母越大的分?jǐn)?shù)值越大。

 ?、荼堵时容^法:當(dāng)比較兩個分子或分母同時變化時分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見同倍率變化規(guī)律)

 ?、揶D(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。

  ⑦倍數(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進(jìn)行比較。

 ?、啻笮”容^法:用一個分?jǐn)?shù)減去另一個分?jǐn)?shù),得出的數(shù)和0比較。

 ?、岬箶?shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。

 ?、饣鶞?zhǔn)數(shù)比較法:確定一個基準(zhǔn)數(shù),每一個數(shù)與基準(zhǔn)數(shù)比較。

  22、分?jǐn)?shù)拆分:

  將一個分?jǐn)?shù)單位分解成兩個分?jǐn)?shù)之和的公式:

  23、完全平方數(shù):

  完全平方數(shù)特征:

  1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。

  2.除以3余0或余1;反之不成立。

  3.除以4余0或余1;反之不成立。

  4.約數(shù)個數(shù)為奇數(shù);反之成立。

  5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。

  6.奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。

  7.兩個相臨整數(shù)的平方之間不可能再有平方數(shù)。

  平方差公式:

  X2-Y2=(X-Y)(X+Y)

  完全平方和公式:

  (X+Y)2=X2+2XY+Y2

  完全平方差公式:

  (X-Y)2=X2-2XY+Y2

  24、比和比例:

  比:

  兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。

  比值:

  比的前項除以后項的商,叫做比值。

  比的性質(zhì):

  比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。

  比例:

  表示兩個比相等的式子叫做比例。a:b=c:d或

  比例的性質(zhì):

  兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。

  正比例:

  若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時),則A與B成正比。

  反比例:

  若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時),則A與B成反比。

  比例尺:

  圖上距離與實(shí)際距離的比叫做比例尺。

  按比例分配:

  把幾個數(shù)按一定比例分成幾份,叫按比例分配。

  25、綜合行程:

  基本概念:

  行程問題是研究物體運(yùn)動的,它研究的是物體速度、時間、路程三者之間的關(guān)系.

  基本公式:

  路程=速度×時間;路程÷時間=速度;路程÷速度=時間

  關(guān)鍵問題:

  確定運(yùn)動過程中的位置和方向。

  相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)

  追及問題:追及時間=路程差÷速度差(寫出其他公式)

  流水問題:順?biāo)谐?(船速+水速)×順?biāo)畷r間

  逆水行程=(船速-水速)×逆水時間

  順?biāo)俣?船速+水速

  逆水速度=船速-水速

  靜水速度=(順?biāo)俣?逆水速度)÷2

  水 速=(順?biāo)俣?逆水速度)÷2

  流水問題:關(guān)鍵是確定物體所運(yùn)動的速度,參照以上公式。

  過橋問題:關(guān)鍵是確定物體所運(yùn)動的路程,參照以上公式。

  主要方法:畫線段圖法

  基本題型:

  已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。

  26、工程問題:

  基本公式:

 ?、俟ぷ骺偭?工作效率×工作時間

  ②工作效率=工作總量÷工作時間

 ?、酃ぷ鲿r間=工作總量÷工作效率

  基本思路:

  ①假設(shè)工作總量為“1”(和總工作量無關(guān));

 ?、诩僭O(shè)一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關(guān)系,可以簡單地表示出工作效率及工作時間.

  關(guān)鍵問題:

  確定工作量、工作時間、工作效率間的兩兩對應(yīng)關(guān)系。

  27、邏輯推理:

  條件分析—假設(shè)法:

  假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。

  條件分析—列表法:

  當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。

  條件分析—圖表法:

  當(dāng)兩個對象之間只有兩種關(guān)系時,就可用連線表示兩個對象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識或不認(rèn)識兩種狀態(tài),有連線表示認(rèn)識,沒有表示不認(rèn)識。

  邏輯計算:

  在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。

  簡單歸納與推理:

  根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。

  28、幾何面積:

  基本思路:

  在一些面積的計算上,不能直接運(yùn)用公式的情況下,一般需要對圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。

  常用方法:

  1.連輔助線方法

  2.利用等底等高的兩個三角形面積相等。

  3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說的是任意點(diǎn),解題時可把任意點(diǎn)設(shè)置在特殊位置上)。

  4.利用特殊規(guī)律

  ①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)

  ②梯形對角線連線后,兩腰部分面積相等。

  ③圓的面積占外接正方形面積的78.5%。

  29、時鐘問題—快慢表問題:

  基本思路:

  1、按照行程問題中的思維方法解題;

  2、不同的表當(dāng)成速度不同的運(yùn)動物體;

  3、路程的單位是分格(表一周為60分格);

  4、時間是標(biāo)準(zhǔn)表所經(jīng)過的時間;

  5、合理利用行程問題中的比例關(guān)系;

  30、時鐘問題—鐘面追及:

  基本思路:

  封閉曲線上的追及問題。

  關(guān)鍵問題:

 ?、俅_定分針與時針的初始位置;

 ?、诖_定分針與時針的路程差;

  基本方法:

  ①分格方法:

  時鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時走60分格,即一周;而時針只走5分格,故分針每分鐘走1分格,時針每分鐘走1/12分格。

 ?、诙葦?shù)方法:

  從角度觀點(diǎn)看,鐘面圓周一周是360°,分針每分鐘轉(zhuǎn) 360/60度,即6°,時針每分鐘轉(zhuǎn)360/12X60度,即1/2度。

  31、濃度與配比:

  經(jīng)驗總結(jié):

  在配比的過程中存在這樣的一個反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。

  溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。

  溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。

  溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。

  基本公式:

  溶液重量=溶質(zhì)重量+溶劑重量;

  溶質(zhì)重量=溶液重量×濃度;

  濃度= 溶質(zhì)/溶液×100%=溶質(zhì)/(溶劑+溶質(zhì))×100%

  經(jīng)驗總結(jié):

  在配比的過程中存在這樣的一個反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。

  32、經(jīng)濟(jì)問題:

  利潤的百分?jǐn)?shù)=(賣價-成本)÷成本×100%;

  賣價=成本×(1+利潤的百分?jǐn)?shù));

  成本=賣價÷(1+利潤的百分?jǐn)?shù));

  商品的定價按照期望的利潤來確定;

  定價=成本×(1+期望利潤的百分?jǐn)?shù));

  本金:儲蓄的金額;

  利率:利息和本金的比;

  利息=本金×利率×期數(shù);

  含稅價格=不含稅價格×(1+增值稅稅率);

  33、不定方程:

  一次不定方程:

  含有兩個未知數(shù)的一個方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;

  常規(guī)方法:

  觀察法、試驗法、枚舉法;

  多元不定方程:

  含有三個未知數(shù)的方程叫三元一次方程,它的解也不唯一;

  多元不定方程解法:

  根據(jù)已知條件確定一個未知數(shù)的值,或者消去一個未知數(shù),這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可;

  涉及知識點(diǎn):

  列方程、數(shù)的整除、大小比較;

  解不定方程的步驟:

  1、列方程;2、消元;3、寫出表達(dá)式;4、確定范圍;5、確定特征;6、確定答案;

  技巧總結(jié):

  A、寫出表達(dá)式的技巧:用特征不明顯的未知數(shù)表示特征明顯的未知數(shù),同時考慮用范圍小的未知數(shù)表示范圍大的未知數(shù);

  B、消元技巧:消掉范圍大的未知數(shù);

  34、循環(huán)小數(shù):

  把循環(huán)小數(shù)的小數(shù)部分化成分?jǐn)?shù)的規(guī)則:

 ?、偌冄h(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):將一個循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分。

 ?、诨煅h(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):分子是第二個循環(huán)節(jié)以前的小數(shù)部分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個數(shù)與一個循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個數(shù)與不循環(huán)部分的位數(shù)相同。

  分?jǐn)?shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法:

 ?、僖粋€最簡分?jǐn)?shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個分?jǐn)?shù)化成的小數(shù)必定是混循環(huán)小數(shù)。

 ?、谝粋€最簡分?jǐn)?shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個分?jǐn)?shù)化成的小數(shù)必定是純循環(huán)小數(shù)。


小學(xué)六年級的數(shù)學(xué)難點(diǎn)解答相關(guān)文章:

1.六年級數(shù)學(xué)下冊重難點(diǎn)

2.小學(xué)六年級數(shù)學(xué)學(xué)習(xí)方法與技巧

3.小學(xué)六年級數(shù)學(xué)學(xué)習(xí)方法和技巧大全

4.小學(xué)生六年級數(shù)學(xué)基本概念復(fù)習(xí)與復(fù)習(xí)方法

5.六年級數(shù)學(xué)利潤問題易錯題

103541