學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級(jí)數(shù)學(xué) > 初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

時(shí)間: 慧良1230 分享

初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納大全

學(xué)習(xí),需要不斷的重復(fù)重復(fù),重復(fù)學(xué)過(guò)的知識(shí),加深印象,其實(shí)任何科目的學(xué)習(xí)方法都是不斷重復(fù)學(xué)習(xí),下面是小編整理的初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn),希望能幫助到大家。

初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

初三上冊(cè)數(shù)學(xué)第四單元知識(shí)點(diǎn)

扇形周長(zhǎng)公式

因?yàn)樯刃?兩條半徑+弧長(zhǎng)

若半徑為R,扇形所對(duì)的圓心角為n°,那么扇形周長(zhǎng):

C=2R+nπR÷180

扇形面積公式

在半徑為R的圓中,因?yàn)?60°的圓心角所對(duì)的扇形的面積就是圓面積S=πR^2,所以圓心角為n°的扇形面積

S=nπR^2÷360

▲什么是圓周率?

圓周率是一個(gè)常數(shù),是代表圓周和直徑的比例。它是一個(gè)無(wú)理數(shù),即是一個(gè)無(wú)限不循環(huán)小數(shù)。但在日常生活中,通常都用3.14來(lái)代表圓周率去進(jìn)行計(jì)算,即使是工程師或物理學(xué)家要進(jìn)行較精密的計(jì)算,也只取值至小數(shù)點(diǎn)后約20位。

▲什么是π?

π是第十六個(gè)希臘字母,本來(lái)它是和圓周率沒(méi)有關(guān)系的,但大數(shù)學(xué)家歐拉在一七三六年開(kāi)始,在書(shū)信和論文中都用π來(lái)代表圓周率。既然他是大數(shù)學(xué)家,所以人們也有樣學(xué)樣地用π來(lái)表圓周率了。但π除了表示圓周率外,也可以用來(lái)表示其他事物,在統(tǒng)計(jì)學(xué)中也能看到它的出現(xiàn)。

圓的面積 s = π × r × r

其中,π 是周圍率,等于3.14

r 是圓的半徑。

圓的周長(zhǎng)計(jì)算公式為:C=2πR 。C代表圓的周長(zhǎng),r代表圓的半徑。圓的面積公式為:S=πR2(R的平方) 。S代表圓的面積,r為圓的半徑。

橢圓周長(zhǎng)計(jì)算公式

橢圓周長(zhǎng)公式:L=2πb+4(a-b)

橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。

橢圓面積計(jì)算公式

橢圓面積公式: S=πab

橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。

1.有關(guān)的計(jì)算:

(1)圓的周長(zhǎng)C=2πR;(2)弧長(zhǎng)L= ;(3)圓的面積S=πR2.

(4)扇形面積S扇形 = ;

(5)弓形面積S弓形 =扇形面積SAOB±ΔAOB的面積.(如圖)

2.圓柱與圓錐的側(cè)面展開(kāi)圖:

(1)圓柱的側(cè)面積:S圓柱側(cè) =2πrh; (r:底面半徑;h:圓柱高)

(2)圓錐的側(cè)面積:S圓錐側(cè) = =πrR. (L=2πr,R是圓錐母線長(zhǎng);r是底面半徑)

描述定義:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓。固定的端點(diǎn)O叫圓心。線段OA叫做半徑。

集合定義:平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

2、圓的表示方法:以O(shè)為圓心的圓記做⊙O,讀作圓O。

3、圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。

4、半徑:圓心與圓上任意一點(diǎn)所連的線段叫半徑。直徑:經(jīng)過(guò)圓心的弦叫直徑。

5、圓心角:頂點(diǎn)在圓心上的角叫圓心角。

6、圓周角:頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫圓周角。

7、弦心距:圓心到弦的垂線段的長(zhǎng)。

初三數(shù)學(xué)知識(shí)點(diǎn)-二次根式

1、二次根式

式子)0(?aa叫做二次根式,二次根式必須滿足:含有二次根號(hào)“”;被開(kāi)方數(shù)a

必須是非負(fù)數(shù)。

2、最簡(jiǎn)二次根式

若二次根式滿足:被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式,這樣的二次根式叫做最簡(jiǎn)二次根式。

化二次根式為最簡(jiǎn)二次根式的方法和步驟:

(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡(jiǎn)。

(2)如果被開(kāi)方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái)。

3、同類二次根式

幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式。

中考數(shù)學(xué)常用解題技巧

1、配方法 :所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法 :因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角函數(shù)等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

3、換元法 :換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

4、判別式法與韋達(dá)定理 :一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判別式△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至解析幾何、三角函數(shù)運(yùn)算中都有非常廣泛的應(yīng)用。

韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法: 在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的重要方法之一。

6、構(gòu)造法 :在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

7、反證法: 反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。

用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

8、等(面或體)積法: 平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積(體積),而且用它來(lái)證明(計(jì)算)幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積(體積)關(guān)系來(lái)證明或計(jì)算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。

用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點(diǎn)是把已知和未知各量用面積(體積)公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用等(面或體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法: 在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。

幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。

10.客觀性題的解題方法: 選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。

初三上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全相關(guān)文章:

人教版初三數(shù)學(xué)知識(shí)點(diǎn)上冊(cè)

初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

中考初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初三數(shù)學(xué)知識(shí)點(diǎn)歸納整理

初三數(shù)學(xué)知識(shí)點(diǎn)整理歸納

初三數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)總結(jié)

初三數(shù)學(xué)人教版知識(shí)點(diǎn)歸納

初三數(shù)學(xué)重要知識(shí)點(diǎn)

91348