關于九年級數學上冊知識點總結
習慣是經過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習習慣,就會使自己學習感到有序而輕松。下面是小編為大家精心整理的關于九年級數學上冊知識點總結,希望對大家有所幫助。
熟練掌握實數的有關性質
實數和有理數一樣也有許多的重要性質.具體地講可從以下幾方面去思考:
1、相反數實數a的相反數是-a,0的相反數是0,具體地,若a與b互為相反數,則a+b=0;反之,若a+b=0,則a與b互為相反數。
2、絕對值一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數,0的絕對值是0.實數a的絕對值可表示就是說實數a的絕對值一定是一個非負數。
3、倒數乘積為1的兩個實數互為倒數,即若a與b互為倒數,則ab=1;反之,若ab=1,則a與b互為倒數.這里應特別注意的是0沒有倒數。
4、實數大小的比較任意兩個實數都可以比較大小,正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小。
5、實數的運算實數的運算和在有理數范圍內一樣,值得一提的是,實數既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數可以開平方.在進行實數運算時,和有理數運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數的運算律在實數范圍內仍然適用。
一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
7、不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過
旋轉
一、旋轉
1、定義
把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。
2、性質
(1)對應點到旋轉中心的距離相等。
(2)對應點與旋轉中心所連線段的夾角等于旋轉角。
二、中心對稱
1、定義
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
坐標系中對稱點的特征:
1、關于原點對稱的點的特征
兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P’(-x,-y)。
2、關于x軸對稱的點的特征
兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關于x軸的對稱點為P’(x,-y)。
3、關于y軸對稱的點的特征
兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關于y軸的對稱點為P’(-x,y)。
程叫做解不等式。
九年級數學上冊知識點總結相關文章:
九年級數學上冊知識點總結相關文章: