數(shù)學(xué)必修1集合與函數(shù)知識點與學(xué)習(xí)方法
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特別重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法,記憶核心的知識,小編在這里整理了相關(guān)資料,希望能幫助到您。
數(shù)學(xué)必修1集合與函數(shù)知識點
1.集合的含義及表示
1、集合的含義
一般地,我們把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合。
2、集合的中元素的三個特性
(1)元素的確定性;
(2)元素的互異性;
(3)元素的無序性
3、“屬于”的概念
我們通常用大寫的拉丁字母A,B,C, ??表示集合,用小寫拉丁字母a,b,c, ??表示元素 如:如果a是集合A的元素,就說a屬于集合A 記作 a∈A,如果a不屬于集合A 記作 a?A
4、常用數(shù)集及其記法
非負(fù)整數(shù)集(即自然數(shù)集)記作:N;正整數(shù)集記作:N*或 N+ ;整數(shù)集記作:Z;有理數(shù)集記作:Q;實數(shù)集記作:R
5、集合的表示法
(1)列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法稱為描述法。
?、僬Z言描述法:例:{不是直角三角形的三角形}
②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}
(3)圖示法(Venn圖)
【重點】集合的基本概念和表示方法
【難點】運用集合的三種常用表示方法正確表示一些簡單的集合
2.函數(shù)
1、函數(shù)的概念
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.
注意:如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
2、定義域補(bǔ)充
能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1;
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合;
(6)指數(shù)為零底不可以等于零;
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
注意:求出不等式組的解集即為函數(shù)的定義域。
構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域
注意:
(1)構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù));
(2)兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點必須同時具備)
值域補(bǔ)充
(1)、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.
(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。
高一數(shù)學(xué)學(xué)習(xí)方法
先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其練習(xí)題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
做題之后加強(qiáng)反思。學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思??偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。
配合老師主動學(xué)習(xí)。高中學(xué)生學(xué)習(xí)主動性要強(qiáng)。小學(xué)生,常常是完成作業(yè)就盡情的歡樂。初中生基本也是如此,聽話的孩子就能學(xué)習(xí)好。高中則不然,作業(yè)雖多,但是只知道做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明,因此,高中學(xué)生必須提高自己的學(xué)習(xí)主動性。準(zhǔn)備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
課內(nèi)重視聽講,課后及時復(fù)習(xí)。新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)5 習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò)。
建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
數(shù)學(xué)必修1集合與函數(shù)知識點與學(xué)習(xí)方法相關(guān)文章:
1.高二數(shù)學(xué)必修一函數(shù)的概念知識點與學(xué)習(xí)方法
2.高中數(shù)學(xué)必修一集合與函數(shù)知識點