高一必修一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
數(shù)學(xué)是比較容易得分的科目之一,那么關(guān)于高一數(shù)學(xué)必修一知識(shí)點(diǎn)有哪些呢?一起來看看吧,以下是小編準(zhǔn)備的一些高一必修一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),僅供參考。
高一必修一數(shù)學(xué)知識(shí)點(diǎn)
知識(shí)點(diǎn)1
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無序性
說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意?。撼S脭?shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1、有限集含有有限個(gè)元素的集合
2、無限集含有無限個(gè)元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識(shí)點(diǎn)2
I、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=—b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(—b/2a,(4ac—b^2)/4a)
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
知識(shí)點(diǎn)3
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=—b/2a。
對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(—b/2a,(4ac—b’2)/4a)
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b’2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
知識(shí)點(diǎn)4
對(duì)數(shù)函數(shù)
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(1,0)這點(diǎn)。
(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對(duì)數(shù)函數(shù)。
知識(shí)點(diǎn)5
方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。
3、函數(shù)零點(diǎn)的求法:
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。
4、二次函數(shù)的零點(diǎn):
(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
(2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
(3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。
高一數(shù)學(xué)公式和知識(shí)點(diǎn)
高一數(shù)學(xué)公式知識(shí)總結(jié)篇一
三角函數(shù)公式
1、兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
4、和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高一數(shù)學(xué)公式知識(shí)總結(jié)篇二
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
弧長(zhǎng)公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達(dá)定理
高一數(shù)學(xué)公式知識(shí)總結(jié)篇三
判別式
b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b2-4ac
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
高一數(shù)學(xué)答題技巧
1、熟悉基本的解題步驟和解題方法
解題的過程,是一個(gè)思維的過程。對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
2、審題要認(rèn)真仔細(xì)
對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
3、一般思維規(guī)律的方法
如觀察、試驗(yàn)、比較、分類、猜想、類比、聯(lián)想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應(yīng)面廣的特征,常用于思路的發(fā)現(xiàn)與探求。
高一數(shù)學(xué)怎么學(xué)才能學(xué)好
第一,用興趣推動(dòng)學(xué)習(xí),而不是用任務(wù)觀點(diǎn)強(qiáng)迫自己被動(dòng)地學(xué)習(xí)數(shù)學(xué)。
興趣是學(xué)好高中數(shù)學(xué)的一個(gè)非常重要的條件,因此應(yīng)當(dāng)理性地主動(dòng)地培養(yǎng)這種興趣,新時(shí)代的科學(xué)技術(shù)工作者需要扎實(shí)的高數(shù)基礎(chǔ),這種需要應(yīng)當(dāng)成為學(xué)習(xí)數(shù)學(xué)的強(qiáng)大動(dòng)力。其次,在學(xué)習(xí)過程中扎實(shí)認(rèn)真地對(duì)待每一堂課,做對(duì)每一個(gè)習(xí)題,為自己通過鉆研解決任何一個(gè)難題而自豪,對(duì)于高數(shù)的興趣會(huì)在不知不覺中逐漸濃厚起來。
第二,努力擺脫對(duì)于教師和對(duì)于課堂的完全依賴心理。
老師在有限的課堂教學(xué)時(shí)間中,只能講思路,講重點(diǎn),講難點(diǎn),不要指望老師對(duì)所有知識(shí)都講細(xì)講透,要學(xué)會(huì)自學(xué),在自學(xué)中培養(yǎng)自己的學(xué)習(xí)能力和理解能力。
第三,不僅要勤學(xué)還要好問,要不恥下問。
有一部分學(xué)生在學(xué)習(xí)中不愛提問,不愛討論。其中一個(gè)原因是怕自己體的問題太簡(jiǎn)單,怕別人認(rèn)為自己水平低,怕麻煩老師等。學(xué)習(xí)中的問題逐漸積累會(huì)使你在學(xué)習(xí)中的困難越來越大,甚至造成一中非常被動(dòng)的局面。因此,應(yīng)當(dāng)保持正確的心態(tài),不恥下問,直到徹底弄清楚為止。
第四,學(xué)習(xí)要扎扎實(shí)實(shí),切忌不求甚解。
簡(jiǎn)單的證明和運(yùn)算往往包含了最基本的方法和原理,只有認(rèn)真地對(duì)待這些簡(jiǎn)單的問題,扎扎實(shí)實(shí)地完成這些基本訓(xùn)練,才能真正體會(huì),進(jìn)而掌握基本的解題方法,才有能力去分析解決那些復(fù)雜的問題。