學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)必修四知識點梳理

時間: 贊銳0 分享

要盡快適應(yīng)高中學(xué)習(xí),同學(xué)們必須在了解高中學(xué)習(xí)特點的基礎(chǔ)上,掌握科學(xué)的學(xué)習(xí)方法。掌握科學(xué)的學(xué)習(xí)方法,應(yīng)做到主動預(yù)習(xí)、正確聽課、有效復(fù)習(xí)。以下是小編給大家整理的高一數(shù)學(xué)必修四知識點梳理,希望能幫助到你!

高一數(shù)學(xué)必修四知識點梳理1

【公式一】

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α與-α的三角函數(shù)值之間的關(guān)系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一數(shù)學(xué)必修四知識點梳理2

問題提出

1.函數(shù)是研究兩個變量之間的依存關(guān)系的一種數(shù)量形式.對于兩個變量,如果當(dāng)一個變量的取值一定時,另一個變量的取值被惟一確定,則這兩個變量之間的關(guān)系就是一個函數(shù)關(guān)系.

2.在中學(xué)校園里,有這樣一種說法:“如果你的數(shù)學(xué)成績好,那么你的物理學(xué)習(xí)就不會有什么大問題.”按照這種說法,似乎學(xué)生的物理成績與數(shù)學(xué)成績之間存在著某種關(guān)系,我們把數(shù)學(xué)成績和物理成績看成是兩個變量,那么這兩個變量之間的關(guān)系是函數(shù)關(guān)系嗎?

3.我們不能通過一個人的數(shù)學(xué)成績是多少就準(zhǔn)確地斷定其物理成績能達(dá)到多少,學(xué)習(xí)興趣、學(xué)習(xí)時間、教學(xué)水平等,也是影響物理成績的一些因素,但這兩個變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系.類似于這樣的兩個變量之間的關(guān)系,有必要從理論上作些探討,如果能通過數(shù)學(xué)成績對物理成績進(jìn)行合理估計,將有著非常重要的現(xiàn)實意義.

知識探究(一):變量之間的相關(guān)關(guān)系

思考1:考察下列問題中兩個變量之間的關(guān)系:

(1)商品銷售收入與廣告支出經(jīng)費;

(2)糧食產(chǎn)量與施肥量;

(3)人體內(nèi)的脂肪含量與年齡.

這些問題中兩個變量之間的關(guān)系是函數(shù)關(guān)系嗎?

思考2:“名師出高徒”可以解釋為教師的水平越高,學(xué)生的水平就越高,那么學(xué)生的學(xué)業(yè)成績與教師的教學(xué)水平之間的關(guān)系是函數(shù)關(guān)系嗎?你能舉出類似的描述生活中兩個變量之間的這種關(guān)系的成語嗎?

思考3:上述兩個變量之間的關(guān)系是一種非確定性關(guān)系,稱之為相關(guān)關(guān)系,那么相關(guān)關(guān)系的含義如何?

自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系,叫做相關(guān)關(guān)系.

1、球的體積和球的半徑具有()

A函數(shù)關(guān)系B相關(guān)關(guān)系

C不確定關(guān)系D無任何關(guān)系

2、下列兩個變量之間的關(guān)系不是

函數(shù)關(guān)系的是()

A角的度數(shù)和正弦值

B速度一定時,距離和時間的關(guān)系

C正方體的棱長和體積

D日照時間和水稻的畝產(chǎn)量AD練:知識探究(二):散點圖

【問題】在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

其中各年齡對應(yīng)的脂肪數(shù)據(jù)是這個年齡人群脂肪含量的樣本平均數(shù).

思考1:對某一個人來說,他的體內(nèi)脂肪含量不一定隨年齡增長而增加或減少,但是如果把很多個體放在一起,就可能表現(xiàn)出一定的規(guī)律性.觀察上表中的數(shù)據(jù),大體上看,隨著年齡的增加,人體脂肪含量怎樣變化?

思考2:為了確定年齡和人體脂肪含量之間的更明確的關(guān)系,我們需要對數(shù)據(jù)進(jìn)行分析,通過作圖可以對兩個變量之間的關(guān)系有一個直觀的印象.以x軸表示年齡,y軸表示脂肪含量,你能在直角坐標(biāo)系中描出樣本數(shù)據(jù)對應(yīng)的圖形嗎?

思考3:上圖叫做散點圖,你能描述一下散點圖的含義嗎?

在平面直角坐標(biāo)系中,表示具有相關(guān)關(guān)系的兩個變量的一組數(shù)據(jù)圖形,稱為散點圖.

思考4:觀察散點圖的大致趨勢,人的年齡的與人體脂肪含量具有什么相關(guān)關(guān)系?

思考5:在上面的散點圖中,這些點散布在從左下角到右上角的區(qū)域,對于兩個變量的這種相關(guān)關(guān)系,我們將它稱為正相關(guān).一般地,如果兩個變量成正相關(guān),那么這兩個變量的變化趨勢如何?

思考6:如果兩個變量成負(fù)相關(guān),從整體上看這兩個變量的變化趨勢如何?其散點圖有什么特點?

一個變量隨另一個變量的變大而變小,散點圖中的點散布在從左上角到右下角的區(qū)域.

一般情況下兩個變量之間的相關(guān)關(guān)系成正相關(guān)或負(fù)相關(guān),類似于函數(shù)的單調(diào)性.

知識探究(一):回歸直線

思考1:一組樣本數(shù)據(jù)的平均數(shù)是樣本數(shù)據(jù)的中心,那么散點圖中樣本點的中心如何確定?它一定是散點圖中的點嗎?

思考2:在各種各樣的散點圖中,有些散點圖中的點是雜亂分布的,有些散點圖中的點的分布有一定的規(guī)律性,年齡和人體脂肪含量的樣本數(shù)據(jù)的散點圖中的點的分布有什么特點?

這些點大致分布在一條直線附近.

思考3:如果散點圖中的點的分布,從整體上看大致在一條直線附近,則稱這兩個變量之間具有線性相關(guān)關(guān)系,這條直線叫做回歸直線.對具有線性相關(guān)關(guān)系的兩個變量,其回歸直線一定通過樣本點的中心嗎?

思考4:對一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù),你認(rèn)為其回歸直線是一條還是幾條?

思考5:在樣本數(shù)據(jù)的散點圖中,能否用直尺準(zhǔn)確畫出回歸直線?借助計算機怎樣畫出回歸直線?

知識探究(二):回歸方程

在直角坐標(biāo)系中,任何一條直線都有相應(yīng)的方程,回歸直線的方程稱為回歸方程.對一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù),如果能夠求出它的回歸方程,那么我們就可以比較具體、清楚地了解兩個相關(guān)變量的內(nèi)在聯(lián)系,并根據(jù)回歸方程對總體進(jìn)行估計.

思考1:回歸直線與散點圖中各點的位置應(yīng)具有怎樣的關(guān)系?

整體上最接近

思考2:對于求回歸直線方程,你有哪些想法?

思考4:為了從整體上反映n個樣本數(shù)據(jù)與回歸直線的接近程度,你認(rèn)為選用哪個數(shù)量關(guān)系來刻畫比較合適?20.9%某小賣部為了了解熱茶銷售量與氣溫

之間的關(guān)系,隨機統(tǒng)計并制作了某6天

賣出熱茶的杯數(shù)與當(dāng)天氣溫的對照表:

如果某天的氣溫是-50C,你能根據(jù)這些

數(shù)據(jù)預(yù)測這天小賣部賣出熱茶的杯數(shù)嗎?

實例探究

為了了解熱茶銷量與

氣溫的大致關(guān)系,我們

以橫坐標(biāo)x表示氣溫,

縱坐標(biāo)y表示熱茶銷量,

建立直角坐標(biāo)系.將表

中數(shù)據(jù)構(gòu)成的6個數(shù)對

表示的點在坐標(biāo)系內(nèi)

標(biāo)出,得到下圖。

你發(fā)現(xiàn)這些點有什么規(guī)律?

今后我們稱這樣的圖為散點圖(scatterplot).

建構(gòu)數(shù)學(xué)

所以,我們用類似于估計平均數(shù)時的

思想,考慮離差的平方和

當(dāng)x=-5時,熱茶銷量約為66杯

線性回歸方程:

一般地,設(shè)有n個觀察數(shù)據(jù)如下:當(dāng)a,b使2.三點(3,10),(7,20),(11,24)的

線性回歸方程是()D11.69

二、求線性回歸方程

例2:觀察兩相關(guān)變量得如下表:

求兩變量間的回歸方程解1:列表:

閱讀課本P73例1

EXCEL作散點圖

利用線性回歸方程解題步驟:

1、先畫出所給數(shù)據(jù)對應(yīng)的散點圖;

2、觀察散點,如果在一條直線附近,則說明所給量具有線性相關(guān)關(guān)系

3、根據(jù)公式求出線性回歸方程,并解決其他問題。

(1)如果x=3,e=1,分別求兩個模型中y的值;(2)分別說明以上兩個模型是確定性

模型還是隨機模型.

模型1:y=6+4x;模型2:y=6+4x+e.

解(1)模型1:y=6+4x=6+4×3=18;

模型2:y=6+4x+e=6+4×3+1=19.C線性相關(guān)與線性回歸方程小結(jié)1、變量間相關(guān)關(guān)系的散點圖

2、如何利用“最小二乘法”思想求直線的回歸方程

3、學(xué)會用回歸思想考察現(xiàn)實生活中變量之間的相關(guān)關(guān)系

高一數(shù)學(xué)必修四知識點梳理3

定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

(6)顯然冪函數(shù)_。

高一數(shù)學(xué)必修四知識點梳理相關(guān)文章

高一數(shù)學(xué)必修4知識點總結(jié)(人教版)

高一數(shù)學(xué)必修4知識點

高中數(shù)學(xué)必修四第一章知識點總結(jié)

高中數(shù)學(xué)必修四三角函數(shù)萬能公式歸納

高中數(shù)學(xué)必修四公式總結(jié)

高中必修4數(shù)學(xué)三角函數(shù)知識點歸納

高中數(shù)學(xué)必修4目錄

高一數(shù)學(xué)必修一知識點匯總

高一數(shù)學(xué)知識點匯總大全

高一數(shù)學(xué)知識點總結(jié)歸納

1069752