新學期高三數(shù)學教案
上帝創(chuàng)造了整數(shù),所有其余的數(shù)都是人造的——克隆內(nèi)克。今天小編在這給大家整理了高三數(shù)學教案大全,接下來隨著小編一起來看看吧!
高三數(shù)學教案
(一)排列
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);
(4)會分析與數(shù)字有關的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規(guī)律,得出結論,以培養(yǎng)學生嚴謹?shù)膶W習態(tài)度。
教學建議
一、知識結構
二、重點難點分析
本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關排列數(shù)的應用問題.難點是導出排列數(shù)的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應的排列數(shù).排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù).從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應的排列數(shù).
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.
排列的應用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應注意培養(yǎng)學生解決應用問題的能力.
在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.
三、教法建議
①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù).例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù).
②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”.
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區(qū)別.
在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.
要特別注意,不加特殊說明,本章不研究重復排列問題.
③關于排列數(shù)公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.
導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共m個因數(shù)相乘.”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘.
公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋.
④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.
⑤學生在開始做排列應用題的作業(yè)時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.
教學設計示例
排列
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)會分析與數(shù)字有關的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;
教學重點難點
重點是排列的定義、排列數(shù)并運用這個公式去解決有關排列數(shù)的應用問題。
難點是解有關排列的應用題。
教學過程設計
一、 復習引入
上節(jié)課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):
1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.
(1)從中任取1本,有多少種取法?
(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?
2.某農(nóng)場為了考察三個外地優(yōu)良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區(qū)?
找一同學談解答并說明怎樣思考的的過程
第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.
第2題說,共有A,B,C三個優(yōu)良品種,而每個品種在甲類型土地上實驗有三個小區(qū),在乙類型的土地上有三個小區(qū)……所以共需3×5=15個實驗小區(qū).
二、 講授新課
學習了兩個基本原理之后,現(xiàn)在我們繼續(xù)學習排列問題,這是我們本節(jié)討論的重點.先從實例入手:
1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?
由學生設計好方案并回答.
(1)用加法原理設計方案.
首先確定起點站,如果北京是起點站,終點站是上?;驈V州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.
(2)用乘法原理設計方案.
首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經(jīng)選了起點站,終點站只能在其余兩個站去選.那么,根據(jù)乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.
根據(jù)以上分析由學生(板演)寫出所有種飛機票
再看一個實例.
在航海中,船艦常以“旗語”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?
找學生談自己對這個問題的想法.
事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).
首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;
其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.
根據(jù)乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數(shù)是:3×2×1=6(種).
根據(jù)學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)
第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.
由數(shù)字1,2,3,4可以組成多少個沒有重復數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).
根據(jù)乘法原理,從四個不同的數(shù)字中,每次取出三個排成三位數(shù)的方法共有4×3×2=24(個).
請板演的學生談談怎樣想的?
第一步,先確定百位上的數(shù)字.在1,2,3,4這四個數(shù)字中任取一個,有4種取法.
第二步,確定十位上的數(shù)字.當百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個數(shù)字去取,有3種方法.
第三步,確定個位上的數(shù)字.當百位、十位上的數(shù)字都確定以后,個位上的數(shù)字只能從余下的兩個數(shù)字中去取,有2種方法.
根據(jù)乘法原理,所以共有4×3×2=24種.
下面由教師提問,學生回答下列問題
(1)以上我們討論了三個實例,這三個問題有什么共同的地方?
都是從一些研究的對象之中取出某些研究的對象.
(2)取出的這些研究對象又做些什么?
實質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.
(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數(shù)字都是元素.
上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.
第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.
第三個問題呢?
從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.
給出排列定義
請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.
下面由教師提問,學生回答下列問題
(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?
從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.
如第一個問題中,北京—廣州,上?!獜V州是兩個排列,第三個問題中,213與423也是兩個排列.
再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.
(2)還需要搞清楚一個問題,“一個排列”是不是一個數(shù)?
生:“一個排列”不應當是一個數(shù),而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數(shù),不用把所有情況羅列出來,才是一個數(shù).前面提到的第三個問題,實質(zhì)上也是這樣的.
三、 課堂練習
大家思考,下面的排列問題怎樣解?
有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)
分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.
解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個放在第1空箱.
第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.
第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.
第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:
所以,共有9種放法.
四、作業(yè)
課本:P232練習1,2,3,4,5,6,7.
高三數(shù)學教案
(二)排列、組合、二項式定理-基本原理
教學目標
(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結論;
(2)能結合樹形圖來幫助理解加法原理與乘法原理;
(3)正確區(qū)分加法原理與乘法原理,哪一個原理與分類有關,哪一個原理與分步有關;
(4)能應用加法原理與乘法原理解決一些簡單的應用問題,提高學生理解和運用兩個原理的能力;
(5)通過對加法原理與乘法原理的學習,培養(yǎng)學生周密思考、細心分析的良好習慣。
教學建議
一、知識結構
二、重點難點分析
本節(jié)的重點是加法原理與乘法原理,難點是準確區(qū)分加法原理與乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個原理是學習排列組合內(nèi)容的基礎,貫穿整個內(nèi)容之中,一方面它是推導排列數(shù)與組合數(shù)的基礎;另一方面它的結論與其思想在方法本身又在解題時有許多直接應用。
兩個原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問題,其區(qū)別在于:運用加法原理的前提條件是, 做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說,完成這件事的各種方法是相互獨立的;運用乘法原理的前提條件是,做一件事有n個驟,只要在每個步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說,完成這件事的各個步驟是相互依存的。簡單的說,如果完成一件事情的所有方法是屬于分類的問題,每次得到的是最后結果,要用加法原理;如果完成一件事情的方法是屬于分步的問題,每次得到的該步結果,就要用乘法原理。
三、教法建議
關于兩個計數(shù)原理的教學要分三個層次:
第一是對兩個計數(shù)原理的認識與理解.這里要求學生理解兩個計數(shù)原理的意義,并弄清兩個計數(shù)原理的區(qū)別.知道什么情況下使用加法計數(shù)原理,什么情況下使用乘法計數(shù)原理.(建議利用一課時).
第二是對兩個計數(shù)原理的使用.可以讓學生做一下習題(建議利用兩課時):
①用0,1,2,……,9可以組成多少個8位號碼;
②用0,1,2,……,9可以組成多少個8位整數(shù);
③用0,1,2,……,9可以組成多少個無重復數(shù)字的4位整數(shù);
④用0,1,2,……,9可以組成多少個有重復數(shù)字的4位整數(shù);
⑤用0,1,2,……,9可以組成多少個無重復數(shù)字的4位奇數(shù);
⑥用0,1,2,……,9可以組成多少個有兩個重復數(shù)字的4位整數(shù)等等.
第三是使學生掌握兩個計數(shù)原理的綜合應用,這個過程應該貫徹整個教學中,每個排列數(shù)、組合數(shù)公式及性質(zhì)的推導都要用兩個計數(shù)原理,每一道排列、組合問題都可以直接利用兩個原理求解,另外直接計算法、間接計算法都是兩個原理的一種體現(xiàn).教師要引導學生認真地分析題意,恰當?shù)姆诸悺⒎植?,用好、用活兩個基本計數(shù)原理.
教學設計示例
加法原理和乘法原理
教學目標
正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發(fā)展學生的思維能力,培養(yǎng)學生分析問題和解決問題的能力.
教學重點和難點
重點:加法原理和乘法原理.
難點:加法原理和乘法原理的準確應用.
教學用具
投影儀.
教學過程設計
(一)引入新課
從本節(jié)課開始,我們將要學習中學代數(shù)內(nèi)容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯(lián)系很少,而且它還是我們今后學習概率論的基礎,統(tǒng)計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調(diào)配的問題,就離不開它.
今天我們先學習兩個基本原理.
(二)講授新課
1.介紹兩個基本原理
先考慮下面的問題:
問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.
這個問題可以總結為下面的一個基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.
請大家再來考慮下面的問題(打出片子——問題2):
問題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見下圖),從A村經(jīng)B村去C村,共有多少種不同的走法?
這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經(jīng)B村去C村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.
2.淺釋兩個基本原理
兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數(shù).
比較兩個基本原理,想一想,它們有什么區(qū)別?
兩個基本原理的區(qū)別在于:一個與分類有關,一個與分步有關.
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個數(shù)中的所有合數(shù).第一類辦法是找含因數(shù)2的合數(shù),共有4個;第二類辦法是找含因數(shù)3的合數(shù),共有2個;第三類辦法是找含因數(shù)5的合數(shù),共有1個.
1~10中一共有N=4+2+1=7個合數(shù).
題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數(shù)不超過12時,共有多少種不同的走法?
第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.
題2中的合數(shù)是4,6,8,9,10這五個,其中6既含有因數(shù)2,也含有因數(shù)3;10既含有因數(shù)2,也含有因數(shù)5.題中的分析是錯誤的.
從A村到C村總時數(shù)不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.
(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養(yǎng)學生的學習能力)
進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.
如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數(shù)時,就可以直接應用乘法原理.
也就是說:類類互斥,步步獨立.
(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯(lián)系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質(zhì))
(三)應用舉例
現(xiàn)在我們已經(jīng)有了兩個基本原理,我們可以用它們來解決一些簡單問題了.
例1 書架上放有3本不同的數(shù)學書,5本不同的語文書,6本不同的英語書.
(1)若從這些書中任取一本,有多少種不同的取法?
(2)若從這些書中,取數(shù)學書、語文書、英語書各一本,有多少種不同的取法?
(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?
(讓學生思考,要求依據(jù)兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)
(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數(shù)學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據(jù)加法原理,得到的取法種數(shù)是
N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.
(2)從書架上任取數(shù)學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數(shù)學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據(jù)乘法原理,得到不同的取法種數(shù)是N=m1×m2×m3=3×5×6=90.故,從書架上取數(shù)學書、語文書、英語書各1本,有90種不同的方法.
(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數(shù)學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數(shù)學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數(shù)是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.
例2 由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復)?
解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法.根據(jù)乘法原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.
答:可以組成100個三位整數(shù).
教師的連續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質(zhì)的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.
(四)歸納小結
歸納什么時候用加法原理、什么時候用乘法原理:
分類時用加法原理,分步時用乘法原理.
應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.
(五)課堂練習
P222:練習1~4.
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
(六)布置作業(yè)
P222:練習5,6,7.
補充題:
1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?
(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù).
(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?
(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
高三數(shù)學教案
(三)一、指導思想。
研究新教材,了解新的信息,更新觀念,探求新的教學模式,加強教改力度,注重團結協(xié)作,面向全體學生,因材施教,激發(fā)學生的數(shù)學學習興趣,培養(yǎng)學生的數(shù)學素質(zhì),全力促進教學效果的提高。
二、學生基本情況。
新的學期里,本人任教高三10、11班兩個文科班的數(shù)學課,這些學生大部分基礎知識薄弱,沒有自主學習的習慣,自制能力差,上課注意力不集中,容易走神,課后獨立完成作業(yè)能力差,懶惰思想嚴重,因此整個高三的復習任務相當艱巨。
三、工作措施。
1、認真學習《考試說明》,研究高考試題,提高復習課的效率。
《考試說明》是命題的依據(jù),備考的依據(jù)。高考試題是《考試說明》的具體體現(xiàn)。因此要認真研究近年來的考試試題,從而加深對《考試說明》的理解,及時把握高考新動向,理解高考對教學的導向,以利于我們準確地把握教學的重、難點,有針對性地選配例題,優(yōu)化教學設計,提高我們的復習質(zhì)量。
2、教學進度。
按照高三數(shù)學組學年教學計劃進行,結合本班實際情況,進行第一輪高三總復習,預計在2月底3月初完成。配合學校舉行的月考,并及時進行教學反思。
3、了解學生。
通過課堂展示、學生交流互動、批改作業(yè)、評閱試卷、課堂板書以及課堂上學生情態(tài)的變化等途徑,深入的了解學生的情況,及時的觀察、發(fā)現(xiàn)、捕捉有關學生的信息調(diào)節(jié)教法,讓教師的教程度上服務于學生。對于基礎較薄弱的學生,應多鼓勵、多指導學法,增強他們學下去的信心和勇氣。
4、精心備課。
精心的備好每一節(jié)課,努力提高課堂效率,平常多去聽同科教師的課,向老教師學習經(jīng)驗和好的教學方法,努力提高自己的任教能力。
5、優(yōu)化練習。
提高練習的有效性:知識的鞏固,技能的熟練,能力的提高都需要通過適當而有效的練習才能實現(xiàn)。練習題要精選,題量要適度,注意題目的典型性和層次性,以適應不同層次的學生;對練習要全批全改,做好學生的錯題統(tǒng)計,對于錯的較多的題目,找出錯的原因。
練習的講評是高三數(shù)學教學的一個重要的環(huán)節(jié),不該講的就不講,該點撥的要點撥,該講的內(nèi)容一定要講透;對于典型問題,要讓學生展示講解,充分暴露學生的思維過程,加強教學的針對性。多做練習,注重綜合。選取“題型小、方法巧、運用活、覆蓋寬”的題目訓練學生的應變能力。
6、注重學習方法、數(shù)學方法的指導。
我們在復習中要加強數(shù)學思想方法的復習:如轉(zhuǎn)化與化歸的思想、函數(shù)與方程的思想、分類與整合的思想、數(shù)形結合的思想、特殊與一般的思想、或然與必然的思想等。以及配方法、換元法、待定系數(shù)法、反證法、數(shù)學歸納法、解析法等數(shù)學基本方法都要有意識地根據(jù)學生學習實際予以復習及落實。
針對學生的具體情況,進行復習的學法指導,使學生養(yǎng)成良好的學習習慣,提高復習的效率。如:要求學生建立錯題本,尤其是考后錯題,讓學生養(yǎng)成反思的習慣;養(yǎng)成學生善于結合圖形直觀思維的習慣;養(yǎng)成學生表述規(guī)范,按照解答題的必要步驟和書寫格式答題的習慣等。
7、注意心理調(diào)節(jié)和應試技巧的訓練。
應試的技巧和心理的訓練要三高三的第一節(jié)課開始,要貫穿于整個高三的復習課,良好的心理素質(zhì)是高考成功的一個重要環(huán)節(jié)。我們數(shù)學老師在講課時尤其是考試中主要鍛煉學生的心理素質(zhì),我們教育學生要以平常心來對待每一次考試。
高三數(shù)學教案
(四)一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的興趣。
教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇?。突破難點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創(chuàng)設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設情境,布疑激趣
“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預習下一節(jié)內(nèi)容。
高三數(shù)學教案
(五)一:說教材
平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉(zhuǎn)化為數(shù)之間的運算。本節(jié)內(nèi)容是在平面向量的坐標表示以及平面向量的數(shù)量積及其運算律的基礎上,介紹了平面向量數(shù)量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關問題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。
二:說學習目標和要求
通過本節(jié)的學習,要讓學生掌握
(1):平面向量數(shù)量積的坐標表示。
(2):平面兩點間的距離公式。
(3):向量垂直的坐標表示的充要條件。
以及它們的一些簡單應用,以上三點也是本節(jié)課的重點,本節(jié)課的難點是向量垂直的坐標表示的充要條件以及它的靈活應用。
三:說教法
在教學過程中,我主要采用了以下幾種教學方法:
(1)啟發(fā)式教學法
因為本節(jié)課重點的坐標表示公式的推導相對比較容易,所以這節(jié)課我準備讓學生自行推導出兩個向量數(shù)量積的坐標表示公式,然后引導學生發(fā)現(xiàn)幾個重要的結論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。
(2)講解式教學法
主要是講清概念,解除學生在概念理解上的疑惑感;例題講解時,演示解題過程!
主要輔助教學的手段(powerpoint)
(3)討論式教學法
主要是通過學生之間的相互交流來加深對較難問題的理解,提高學生的自學能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。
四:說學法
學生是課堂的主體,一切教學活動都要圍繞學生展開,借以誘發(fā)學生的學習興趣,增強課堂上和學生的交流,從而達到及時發(fā)現(xiàn)問題,解決問題的目的。通過精講多練,充分調(diào)動學生自主學習的積極性。如讓學生自己動手推導兩個向量數(shù)量積的坐標公式,引導學生推導4個重要的結論!并在具體的問題中,讓學生建立方程的思想,更好的解決問題!
五:說教學過程
這節(jié)課我準備這樣進行:
首先提出問題:要算出兩個非零向量的數(shù)量積,我們需要知道哪些量?
繼續(xù)提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數(shù)量積呢?
引導學生自己推導平面向量數(shù)量積的坐標表示公式,在此公式基礎上還可以引導學生得到以下幾個重要結論:
(1) 模的計算公式
(2)平面兩點間的距離公式。
(3)兩向量夾角的余弦的坐標表示
(4)兩個向量垂直的標表示的充要條件
第二部分是例題講解,通過例題講解,使學生更加熟悉公式并會加以應用。
例題1是書上122頁例1,此題是直接用平面向量數(shù)量積的坐標公式的題,目的是讓學生熟悉這個公式,并在此題基礎上,求這兩個向量的夾角?目的是讓學生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應用:即兩個向量的數(shù)量積是否為零是判斷相應的兩條直線是否垂直的重要方法之一。
例題3是在例2的基礎上稍微作了一下改變,目的是讓學生會應用公式來解決問題,并讓學生在這要有建立方程的思想。
再配以練習,讓學生能熟練的應用公式,掌握今天所學內(nèi)容。
新學期高三數(shù)學教案相關文章: