人教版高三數學重要知識點
與高一高二不同之處在于,此時復習是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。小編為你精心準備了《人教版高三數學重要知識點》助你金榜題名!
【篇一】
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.處理二次函數的問題勿忘數形結合
二次函數在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;
12.依據單調性
利用一次函數在區(qū)間上的保號性可解決求一類參數的范圍問題;
13.恒成立問題的處理方法
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
【篇二】
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
回憶一下初中學過的“等價于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價于B,記作A<=>B?!俺湟獥l件”的含義,實際上與“等價于”的含義完全相同。也就是說,如果命題A等價于命題B,那么我們說命題A成立的充要條件是命題B成立;同時有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。
人教版高三數學重要知識點相關文章:
9.高三數學知識點
10.高三數學重點知識總結大全
人教版高三數學重要知識點
上一篇:高中數學競賽解題方法
下一篇:高三數學專題復習知識點