數(shù)學(xué)六大解答題技巧
高考數(shù)學(xué)想拿高分,就要注重解題技巧,下面就是小編給大家?guī)?lái)的數(shù)學(xué)6大解答題技巧,希望大家喜歡!
數(shù)學(xué)6大解答題技巧
01三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
02數(shù)列題
1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;2.最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
03立體幾何題
1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;2.求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。
04概率問(wèn)題
1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);2.搞清是什么概率模型,套用哪個(gè)公式;3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);5.注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;6.注意放回抽樣,不放回抽樣;7.注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;8.注意條件概率公式;9.注意平均分組、不完全平均分組問(wèn)題。
05圓錐曲線問(wèn)題
1.注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;2.注意直線的設(shè)法(法1分有斜率,沒(méi)斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等等;3.戰(zhàn)術(shù)上整體思路要保7分,爭(zhēng)9分,想12分。
06導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問(wèn)題
1.先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(kāi)(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào));2.注意最后一問(wèn)有應(yīng)用前面結(jié)論的意識(shí);3.注意分論討論的思想;4.不等式問(wèn)題有構(gòu)造函數(shù)的意識(shí);5.恒成立問(wèn)題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);6.整體思路上保6分,爭(zhēng)10分,想12分。
2020高考數(shù)學(xué)二輪復(fù)習(xí)規(guī)劃
專題一:函數(shù)與不等式
以函數(shù)為主線,不等式和函數(shù)綜合題型是考點(diǎn)。
函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性,奇偶性,周期性,對(duì)稱性。這些性質(zhì)通常會(huì)綜合起來(lái)一起考察,并且有時(shí)會(huì)考察具體函數(shù)的這些性質(zhì),有時(shí)會(huì)考察抽象函數(shù)的這些性質(zhì)。
一元二次函數(shù):一元二次函數(shù)是貫穿中學(xué)階段的一大函數(shù),初中階段主要對(duì)它的一些基礎(chǔ)性質(zhì)進(jìn)行了了解,高中階段更多的是將它與導(dǎo)數(shù)進(jìn)行銜接,根據(jù)拋物線的開(kāi)口方向,與x軸的交點(diǎn)位置,進(jìn)而討論與定義域在x軸上的擺放順序,這樣可以判斷導(dǎo)數(shù)的正負(fù),最終達(dá)到求出單調(diào)區(qū)間的目的,求出極值及最值。
不等式:這一類問(wèn)題常常出現(xiàn)在恒成立,或存在性問(wèn)題中,其實(shí)質(zhì)是求函數(shù)的最值。當(dāng)然關(guān)于不等式的解法,均值不等式,這些不等式的基礎(chǔ)知識(shí)點(diǎn)需掌握,還有一類較難的綜合性問(wèn)題為不等式與數(shù)列的結(jié)合問(wèn)題,掌握幾種不等式的放縮技巧是非常必要的。
專題二:數(shù)列
以等差等比數(shù)列為載體,考察等差等比數(shù)列的通項(xiàng)公式,求和公式,通項(xiàng)公式和求和公式的關(guān)系,求通項(xiàng)公式的幾種常用方法,求前n項(xiàng)和的幾種常用方法,這些知識(shí)點(diǎn)需要掌握。
專題三:三角函數(shù),平面向量,解三角形
三角函數(shù)是每年必考的知識(shí)點(diǎn),難度較小,選擇,填空,解答題中都有涉及,有時(shí)候考察三角函數(shù)的公式之間的互相轉(zhuǎn)化,進(jìn)而求單調(diào)區(qū)間或值域;有時(shí)候考察三角函數(shù)與解三角形,向量的綜合性問(wèn)題,當(dāng)然正弦,余弦定理是很好的工具。向量可以很好得實(shí)現(xiàn)數(shù)與形的轉(zhuǎn)化,是一個(gè)很重要的知識(shí)銜接點(diǎn),它還可以和數(shù)學(xué)的一大難點(diǎn)解析幾何整合。
專題四:立體幾何
立體幾何中,三視圖是每年必考點(diǎn),主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考察建立空間直角坐標(biāo)系,通過(guò)向量這一手段求空間距離,線面角,二面角等。
另外,需要掌握棱錐,棱柱的性質(zhì),在棱錐中,著重掌握三棱錐,四棱錐,棱柱中,應(yīng)該掌握三棱柱,長(zhǎng)方體??臻g直線與平面的位置關(guān)系應(yīng)以證明垂直為重點(diǎn),當(dāng)然??疾斓姆椒殚g接證明。
專題五:解析幾何
直線與圓錐曲線的位置關(guān)系,動(dòng)點(diǎn)軌跡的探討,求定值,定點(diǎn),最值這些為近年來(lái)考的熱點(diǎn)問(wèn)題。解析幾何是考生所公認(rèn)的難點(diǎn),它的難點(diǎn)不是對(duì)題目無(wú)思路,不是不知道如何化解所給已知條件,難點(diǎn)在于如何巧妙地破解已知條件,如何巧妙地將復(fù)雜的運(yùn)算量進(jìn)行化簡(jiǎn)。當(dāng)然這里邊包含了一些常用方法,常用技巧,需要學(xué)生去記憶,體會(huì)。
專題六:概率統(tǒng)計(jì),算法,復(fù)數(shù)
算發(fā)與復(fù)數(shù)一般會(huì)出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計(jì)問(wèn)題著重考察學(xué)生的閱讀能力和獲取信息的能力,與實(shí)際生活關(guān)系密切,學(xué)生需學(xué)會(huì)能有效得提取信息,翻譯信息。做到這一點(diǎn)時(shí),題目也就不攻自破了。
專題七:極坐標(biāo)與參數(shù)方程、不等式選講
這部分所考察的題目比較簡(jiǎn)單,主要出現(xiàn)在選做題中,學(xué)生需要熟記公式。
數(shù)學(xué)六大解答題技巧相關(guān)文章:
1.高中數(shù)學(xué)六種解題技巧與五種數(shù)學(xué)答題思路
2.數(shù)學(xué)六大學(xué)習(xí)方法三大復(fù)習(xí)技巧
3.學(xué)好數(shù)學(xué)的六個(gè)必備小竅門
5.數(shù)學(xué)考前復(fù)習(xí)解題方法
6.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié),數(shù)學(xué)的六大方法技巧!