學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

等差數(shù)列教案范文

時(shí)間: 燕純20 分享

  以往的教師在把握教材是,大都是有什么教什么,不能夠靈活的使用教材。而今的數(shù)學(xué)教學(xué)要求把學(xué)生的生活經(jīng)驗(yàn)帶到課堂,要求在簡單的知識(shí)框架和結(jié)構(gòu)上創(chuàng)造性的使用教材,讓課堂變得有血有肉。接下來是小編為大家整理的等差數(shù)列教案范文,希望大家喜歡!

  等差數(shù)列教案范文一

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):理解等差數(shù)列的定義;會(huì)根據(jù)等差數(shù)列的通項(xiàng)公式求某一項(xiàng)的值;會(huì)根據(jù)等差數(shù)列的前幾項(xiàng)求數(shù)列的通項(xiàng)公式。

  過程與方法目標(biāo):通過啟發(fā)、討論、引導(dǎo)、邊教邊練邊反饋的方法提高學(xué)生思考問題、解決問題的能力。

  情感、態(tài)度、價(jià)值觀目標(biāo):培養(yǎng)學(xué)生的邏輯推理能力;培養(yǎng)學(xué)生在探索中學(xué)習(xí)知識(shí)的精神,增強(qiáng)學(xué)生相互合作交流的意識(shí)。

  教學(xué)重點(diǎn):會(huì)求等差數(shù)列的通項(xiàng)公式。

  教學(xué)難點(diǎn):等差數(shù)列的通項(xiàng)公式的推導(dǎo)。

  教學(xué)準(zhǔn)備:課件

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,引入課題

  如圖1所示:一個(gè)堆放鉛筆的V形架的最下面

  一層放1支鉛筆,往上每一層都比它下面一層多放1

  支,這個(gè)V形架的鉛筆從最下面一層往上面排起的

  鉛筆支數(shù)組成數(shù)列:1,2,3,4,……

 ?、谀硞€(gè)電影院設(shè)置了20排座位,這個(gè)電影院從第1排起各排的座位數(shù)組成數(shù)列:

  38,40,42,44,46,……

 ?、廴珖y(tǒng)一鞋號(hào)中,成年女鞋的各種尺碼(表示以cm為單位的鞋底的長度)由大到小可排列為:25,24.5,24,23.5,23,22.5,22,21.5.

  師生互動(dòng),探索新知

  教師:請同學(xué)們仔細(xì)觀察,你發(fā)現(xiàn)這三組數(shù)列有什么變化規(guī)律?

  生:數(shù)列①從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于 ;

  數(shù)列②從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于 ;

  數(shù)列③從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于 ;

  [設(shè)計(jì)說明:采用邊教學(xué)邊反饋的方式,有利于教師及時(shí)了解學(xué)生理解新知識(shí)的程度,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心]

  教師引導(dǎo)學(xué)生觀察上面的數(shù)列①、②、③的特點(diǎn)。

  提出問題1:上面三個(gè)數(shù)列的共同特點(diǎn)是什么?

  學(xué)生:從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

  教師:這樣我們就得到了等差數(shù)列的定義。

  <一>等差數(shù)列的定義:如果一個(gè)數(shù)列從它的第2項(xiàng)起每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),則這個(gè)數(shù)列叫做等差數(shù)列;這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。等差數(shù)列的公差d的數(shù)學(xué)表達(dá)式為: 。

  基礎(chǔ)訓(xùn)練:1、上面數(shù)列①的公差d= ; 數(shù)列②的公差d= ;

  數(shù)列③的公差d=

  [設(shè)計(jì)說明:有利于學(xué)生掃除語言與符號(hào)轉(zhuǎn)換的障礙]

  2、下面的數(shù)列中,哪些是等差數(shù)列?若是,求出它的公差;若不是,則說明理由。

  6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.

  提出問題2:任何一個(gè)數(shù)列一定是等差數(shù)列嗎?如果是等差數(shù)列,公差一定是正數(shù)嗎?

  師生討論得出結(jié)論:

  、一個(gè)數(shù)列是等差數(shù)列必須具有這樣的特點(diǎn): 從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù);

  (2)等差數(shù)列的公差d可能是正數(shù)、負(fù)數(shù)、零。

  [設(shè)計(jì)說明:從具體數(shù)列入手,有利于較多基礎(chǔ)差的學(xué)生理解等差數(shù)的定義,判斷數(shù)列是否為等差數(shù)列轉(zhuǎn)換成具體的步驟:求后面一項(xiàng)與前面一項(xiàng)的差,看這些差是否相等]

  提出問題3:等差數(shù)列 的公差d的數(shù)學(xué)表達(dá)式為: ,

  揭示了求公差d可以用哪些式子表示?

  師生共同活動(dòng): 等,

  變式:

  提出問題4:如果等差數(shù)列 只知道首項(xiàng) ,公差d,那么這個(gè)數(shù)列的其他項(xiàng)如何表示?

  師生共同活動(dòng):

  …,

  [設(shè)計(jì)說明:問題3、問題4的提出訓(xùn)練學(xué)生的變形思想、遞歸思想,從而引出等差數(shù)列的通項(xiàng)公式及學(xué)生容易理解通項(xiàng)公式的變形公式]

  <二>等差數(shù)列的通項(xiàng)公式:

  等差數(shù)列教案范文二

  《等差數(shù)列》教案設(shè)計(jì)

  授課教師 授課班級(jí) 課 題 3.2.1等差數(shù)列(一) 課型 新授課 教學(xué)目標(biāo) 知識(shí)目標(biāo) 等差數(shù)列的定義.

  等差數(shù)列的通項(xiàng)公式. 能力目標(biāo) 明確等差數(shù)列的定義.

  掌握等差數(shù)列的通項(xiàng)公式,并能運(yùn)用其解決問題. 情感目標(biāo) 培養(yǎng)學(xué)生的觀察能力.

  進(jìn)一步提高學(xué)生的推理、歸納能力.

  培養(yǎng)學(xué)生的應(yīng)用意識(shí). 教學(xué)重點(diǎn) 等差數(shù)列的定義的理解和掌握.

  等差數(shù)列的通項(xiàng)公式的推導(dǎo)和應(yīng)用. 教學(xué)難點(diǎn) 等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用. 教學(xué)過程 教學(xué)環(huán)節(jié)和教學(xué)內(nèi)容 設(shè)計(jì)意圖 【復(fù)習(xí)回顧】(2分鐘)

  數(shù)列的定義以及數(shù)列的通項(xiàng)公式和遞推公式。

  【引入】(3分鐘)

  某人要用彩燈裝飾圣誕樹,這個(gè)人做事喜歡按一定的規(guī)律去做,他在圣誕樹的頂尖裝上1個(gè)彩燈,在第一層裝上4個(gè),第二層裝上7個(gè),第三層裝上10個(gè),第四層裝上13個(gè)。如果有第五層,你能猜得出他要裝上多少個(gè)彩燈嗎?他的規(guī)律是怎樣的?

  你能根據(jù)規(guī)律在( )內(nèi)填上合適的數(shù)嗎?

  (1)1, 4, 7,10,13,( )

  (2)21, 21.5, 22, ( ), 23, 23.5,…

  (3)8,( ), 2, -1, -4, …

  (4)-7, -11, -15, ( ), -23

  共同特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。這樣的數(shù)列叫做等差數(shù)列。

  【講授新課】(16分鐘)

  一、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。

  用符號(hào)表示:

  教師活動(dòng):分析定義,強(qiáng)調(diào)關(guān)鍵的地方,幫助學(xué)生理解和掌握。

  問題:1.數(shù)列(1)(2)(3)(4)的公差分別是多少?

  2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10

  (6)5, 5, 5, 5, 5, 5 ……是等差數(shù)列嗎?

  3.求等差數(shù)列 1, 4, 7,10,13,16,…的第100項(xiàng)。

  師生一起討論回答。

  二、等差數(shù)列的通項(xiàng)公式

  如果等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得:

  即:

  即:

  即:

  由此歸納等差數(shù)列的通項(xiàng)公式可得:

  ∴已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng) 和公差d,便可求得其通項(xiàng)

  思考:已知等差數(shù)列的第m項(xiàng) 和公差d,這個(gè)等差數(shù)列的通項(xiàng)公式是?答:

  【例題講解】(8分鐘)

  等差數(shù)列教案范文三

  一、教學(xué)內(nèi)容分析

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  二、學(xué)生學(xué)習(xí)情況分析

  教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。

  三、設(shè)計(jì)思想

  1.教法

 ?、耪T導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。

  ⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。

  ⑶講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。

  2.學(xué)法

  引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。

  用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。

  在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)目標(biāo)

  通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡單的實(shí)際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):

  ①等差數(shù)列的概念。

 ?、诘炔顢?shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  難點(diǎn):

 ?、倮斫獾炔顢?shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。

 ?、诶斫獾炔顢?shù)列是一種函數(shù)模型。

  關(guān)鍵:

  等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。

  六、教學(xué)過程

  教學(xué)環(huán)節(jié) 情境設(shè)計(jì)和學(xué)習(xí)任務(wù) 學(xué)生活動(dòng) 設(shè)計(jì)意圖 創(chuàng)設(shè)情景 在南北朝時(shí)期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更給,問各得金幾何,及未到三人復(fù)應(yīng)得金幾何“。

  這個(gè)問題該怎樣解決呢? 傾聽 課堂引入 探索研究 由學(xué)生觀察分析并得出答案:

  在現(xiàn)實(shí)生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,…

  水庫的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清理水庫的雜魚。如果一個(gè)水庫的水位為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5 觀察分析,發(fā)表各自的意見 引向課題 發(fā)現(xiàn)規(guī)律 思考:同學(xué)們觀察一下上面的這兩個(gè)數(shù)列:

  0,5,10,15,20,…… ①

  18,15.5,13,10.5,8,5.5 ②

  看這些數(shù)列有什么共同特點(diǎn)呢? 觀察分析并得出答案:

  引導(dǎo)學(xué)生觀察相鄰兩項(xiàng)間的關(guān)系,得到:

  對(duì)于數(shù)列①,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于 5 ;

  對(duì)于數(shù)列②,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于 -2.5 ;

  由學(xué)生歸納和概括出,以上兩個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)(即:每個(gè)都具有相鄰兩項(xiàng)差為同一個(gè)常數(shù)的特點(diǎn))。 通過分析,激發(fā)學(xué)生學(xué)習(xí)的探究知識(shí)的興趣,引導(dǎo)揭示數(shù)列的共性特點(diǎn)。 總結(jié)提高 [等差數(shù)列的概念]

  對(duì)于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請同學(xué)們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個(gè)定義:

  等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

  這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對(duì)于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。 學(xué)生認(rèn)真閱讀課本相關(guān)概念,找出關(guān)鍵字。 通過學(xué)生自己閱讀課本,找出關(guān)鍵字,提高學(xué)生的閱讀水平和思維概括能力,學(xué)會(huì)抓重點(diǎn)。 提問:如果在 與 中間插入一個(gè)數(shù)A,使 ,A, 成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件? 由學(xué)生回答:因?yàn)閍,A,b組成了一個(gè)等差數(shù)列,那么由定義可以知道:A-a=b-A

  所以就有 讓學(xué)生參與到知識(shí)的形成過程中,獲得數(shù)學(xué)學(xué)習(xí)的成就感。 由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,這時(shí),A叫做a與b的等差中項(xiàng)。

  不難發(fā)現(xiàn),在一個(gè)等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng)。

  如數(shù)列:1,3,5,7,9,11,13…中5是3和7的等差中項(xiàng),1和9的等差中項(xiàng)。

  9是7和11的等差中項(xiàng),5和13的等差中項(xiàng)。

  看來,

  從而可得在一等差數(shù)列中,若m+n=p+q

  則 深入探究,得到更一般化的結(jié)論 引領(lǐng)學(xué)習(xí)更深入的探究,提高學(xué)生的學(xué)習(xí)水平。 總結(jié)提高 [等差數(shù)列的通項(xiàng)公式]

  對(duì)于以上的等差數(shù)列,我們能不能用通項(xiàng)公式將它們表示出來呢?這是我們接下來要學(xué)習(xí)的內(nèi)容。

 ?、?、我們是通過研究數(shù)列 的第n項(xiàng)與序號(hào)n之間的關(guān)系去寫出數(shù)列的通項(xiàng)公式的。下面由同學(xué)們根據(jù)通項(xiàng)公式的定義,寫出這三組等差數(shù)列的通項(xiàng)公式。 由學(xué)生經(jīng)過分析寫出通項(xiàng)公式:


等差數(shù)列教案范文相關(guān)文章:

1.高中數(shù)學(xué)等差數(shù)列知識(shí)點(diǎn)匯編

2.人教版六年級(jí)上冊《數(shù)學(xué)廣角──數(shù)與形》教案優(yōu)質(zhì)范文三篇

3.等差數(shù)列求和公式

4.高中數(shù)學(xué)教師教學(xué)反思范文3篇

5.怎么寫高中數(shù)學(xué)老師教學(xué)反思范文

6.高中二年級(jí)數(shù)學(xué)教學(xué)反思范文5篇

7.小學(xué)五年級(jí)數(shù)學(xué)上冊《多邊形的面積》教案范文三篇

8.對(duì)高中教師總結(jié)

9.高中教學(xué)工作總結(jié)以及來年計(jì)劃范文

10.高中數(shù)學(xué)教學(xué)計(jì)劃五篇

434651