2020高考數(shù)學(xué)知識點(diǎn)
備戰(zhàn)2020高考,高考數(shù)學(xué)考什么?高考數(shù)學(xué)要想那高分就對知識點(diǎn)進(jìn)行總結(jié),下面是小編整理分享的2020高考數(shù)學(xué)知識點(diǎn),歡迎閱讀與借鑒,希望對你們有幫助!
2020高考數(shù)學(xué)知識點(diǎn):集合與函數(shù)
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.
2.在應(yīng)用條件時(shí),易A忽略是空集的情況
3.你會用補(bǔ)集的思想解決有關(guān)問題嗎?
4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對稱.
8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
11.求函數(shù)單調(diào)性時(shí),易錯誤地在多個(gè)單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
14.解對數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。
17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?
2020高考數(shù)學(xué)知識點(diǎn):不等式
18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?
21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號可倒”即a>b>0,a<0.<p>
2020高考數(shù)學(xué)知識點(diǎn):軌跡
軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。
一、求動點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗(yàn)。
二、求動點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
_譯法:求動點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點(diǎn)軌跡方程。
2020高考數(shù)學(xué)知識點(diǎn)相關(guān)文章:
★ 2020高考數(shù)學(xué)必看知識點(diǎn)
★ 2020高考數(shù)學(xué)知識點(diǎn)大全
★ 2020高考數(shù)學(xué)知識點(diǎn)總結(jié)大全
★ 2020高考數(shù)學(xué)知識點(diǎn)歸納總結(jié)
★ 2020年高考數(shù)學(xué)知識點(diǎn)總結(jié)
★ 2020年高考數(shù)學(xué)知識點(diǎn)
★ 2020高考數(shù)學(xué)必考知識點(diǎn)總結(jié)
★ 2020高考數(shù)學(xué)176個(gè)知識點(diǎn)題型歸納,高考數(shù)學(xué)如何達(dá)到及格