學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理

精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理

時(shí)間: 楚琪0 分享

2022精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理

總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,因此我們要做好歸納,寫(xiě)好總結(jié)。我們?cè)撛趺磳?xiě)總結(jié)呢?下面是小編給大家?guī)?lái)的精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理,以供大家參考!

精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理

一個(gè)推導(dǎo)

利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個(gè)防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

注:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列.

高三最新數(shù)學(xué)知識(shí)點(diǎn)小結(jié)

隨機(jī)抽樣

簡(jiǎn)介

(抽簽法、隨機(jī)樣數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;

優(yōu)點(diǎn):操作簡(jiǎn)便易行

缺點(diǎn):總體過(guò)大不易實(shí)行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫(xiě)在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

(抽簽法簡(jiǎn)單易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體“攪拌均勻”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

(2)隨機(jī)數(shù)法

隨機(jī)抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

分層抽樣

簡(jiǎn)介

分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有明顯差異。共同點(diǎn):每個(gè)個(gè)體被抽到的概率都相等N/M。

定義

一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什么是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個(gè)互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

優(yōu)缺點(diǎn)

整群抽樣的優(yōu)點(diǎn)是實(shí)施方便、節(jié)省經(jīng)費(fèi);

整群抽樣的缺點(diǎn)是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡(jiǎn)單隨機(jī)抽樣。

實(shí)施步驟

先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對(duì)這些群內(nèi)所有個(gè)體或單元均進(jìn)行調(diào)查。抽樣過(guò)程可分為以下幾個(gè)步驟:

一、確定分群的標(biāo)注

二、總體(N)分成若干個(gè)互不重疊的部分,每個(gè)部分為一群。

三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

四、采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個(gè)班做統(tǒng)計(jì);進(jìn)行產(chǎn)品檢驗(yàn);每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗(yàn)等。

與分層抽樣的區(qū)別

整群抽樣與分層抽樣在形式上有相似之處,但實(shí)際上差別很大。

分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個(gè)體或單元差異大;

分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

系統(tǒng)抽樣

定義

當(dāng)總體中的個(gè)體數(shù)較多時(shí),采用簡(jiǎn)單隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

步驟

一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

(1)先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門(mén)牌號(hào)等;

(2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;

(3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);

(4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獲取整個(gè)樣本。

高三數(shù)學(xué)必修三公式知識(shí)點(diǎn)大全

一、對(duì)數(shù)函數(shù)

log.a(MN)=logaM+logN

loga(M/N)=logaM-logaN

logaM^n=nlogaM(n=R)

logbN=logaN/logab(a>0,b>0,N>0a、b均不等于1)

二、簡(jiǎn)單幾何體的面積與體積

S直棱柱側(cè)=c_h(底面周長(zhǎng)乘以高)

S正棱椎側(cè)=1/2_c_h′(底面的周長(zhǎng)和斜高的一半)

設(shè)正棱臺(tái)上、下底面的周長(zhǎng)分別為c′,c,斜高為h′,S=1/2_(c+c′)_h

S圓柱側(cè)=c_l

S圓臺(tái)側(cè)=1/2_(c+c′)_l=兀_(r+r′)_l

S圓錐側(cè)=1/2_c_l=兀_r_l

S球=4_兀_R^3

V柱體=S_h

V錐體=(1/3)_S_h

V球=(4/3)_兀_R^3

三、兩直線的位置關(guān)系及距離公式

(1)數(shù)軸上兩點(diǎn)間的距離公式|AB|=|x2-x1|

(2)平面上兩點(diǎn)A(x1,y1),(x2,y2)間的距離公式

|AB|=sqr[(x2-x1)^2+(y2-y1)^2]

(3)點(diǎn)P(x0,y0)到直線l:Ax+By+C=0的距離公式d=|Ax0+By0+C|/sqr

(A^2+B^2)

(4)兩平行直線l1:=Ax+By+C=0,l2=Ax+By+C2=0之間的距離d=|C1-

C2|/sqr(A^2+B^2)

同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式

sin(2_k_兀+a)=sin(a)

cos(2_k_兀+a)=cosa

tan(2_兀+a)=tana

sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

sin(2_兀-a)=-sina,cos(2_兀-a)=cosa,tan(2_兀-a)=-tana

sin(兀+a)=-sina

sin(兀-a)=sina

cos(兀+a)=-cosa

cos(兀-a)=-cosa

tan(兀+a)=tana

四、二倍角公式及其變形使用

1、二倍角公式

sin2a=2_sina_cosa

cos2a=(cosa)^2-(sina)^2=2_(cosa)^2-1=1-2_(sina)^2

tan2a=(2_tana)/[1-(tana)^2]

2、二倍角公式的變形

(cosa)^2=(1+cos2a)/2

(sina)^2=(1-cos2a)/2

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

五、正弦定理和余弦定理

正弦定理:

a/sinA=b/sinB=c/sinC

余弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

cosA=(b^2+c^2-a^2)/2bc

cosB=(a^2+c^2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

tan(兀-a)=-tana

sin(兀/2+a)=cosa

sin(兀/2-a)=cosa

cos(兀/2+a)=-sina

cos(兀/2-a)=sina

tan(兀/2+a)=-cota

tan(兀/2-a)=cota

(sina)^2+(cosa)^2=1

sina/cosa=tana

兩角和與差的余弦公式

cos(a-b)=cosa_cosb+sina_sinb

cos(a-b)=cosa_cosb-sina_sinb

兩角和與差的正弦公式

sin(a+b)=sina_cosb+cosa_sinb

sin(a-b)=sina_cosb-cosa_sinb

兩角和與差的正切公式

tan(a+b)=(tana+tanb)/(1-tana_tanb)

tan(a-b)=(tana-tanb)/(1+tana_tanb)

精選高三數(shù)學(xué)知識(shí)點(diǎn)框架整理相關(guān)文章:

高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總

高三數(shù)學(xué)各章節(jié)的知識(shí)點(diǎn)歸納

高三數(shù)學(xué)知識(shí)點(diǎn)歸納

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)考試必考的重要知識(shí)點(diǎn)歸納

高三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納

高三數(shù)學(xué)單元必掌握的知識(shí)點(diǎn)歸納

高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析

高三數(shù)學(xué)相關(guān)的知識(shí)點(diǎn)歸納

高三數(shù)學(xué)知識(shí)點(diǎn)歸納小總結(jié)

1376254