學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數(shù)學 > 高三數(shù)學重點知識點

高三數(shù)學重點知識點

時間: 楚琪0 分享

高三數(shù)學重點知識點2022

總結是在一段時間內對學習和工作生活等表現(xiàn)加以總結和概括的一種書面材料,它可以幫助我們有尋找學習和工作中的規(guī)律,因此我們要做好歸納,寫好總結。那么總結有什么格式呢?下面是小編給大家?guī)淼母呷龜?shù)學重點知識點,以供大家參考!

高三數(shù)學重點知識點

1、課程內容:

必修課程由5個模塊組成:

必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統(tǒng)計、概率。

必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

必修5:解三角形、數(shù)列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發(fā)生、發(fā)展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、算法、概率、統(tǒng)計等內容。

2、重難點及考點:

重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導數(shù)

難點:函數(shù)、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應用

⑶數(shù)列:數(shù)列的有關概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應用

⑷三角函數(shù):有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質、三角函數(shù)的應用

⑸平面向量:有關概念與初等運算、坐標運算、數(shù)量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的'證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

⑿導數(shù):導數(shù)的概念、求導、導數(shù)的應用

⒀復數(shù):復數(shù)的概念與運算

高三數(shù)學知識點歸納總結

第一部分集合

(1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

(2)注意:討論的時候不要遺忘了的情況。

第二部分函數(shù)與導數(shù)

1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導數(shù)法

3、復合函數(shù)的有關問題

(1)復合函數(shù)定義域求法:

①若f(x)的定義域為〔a,b〕,則復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

(2)復合函數(shù)單調性的判定:

①首先將原函數(shù)分解為基本函數(shù):內函數(shù)與外函數(shù);

②分別研究內、外函數(shù)在各自定義域內的單調性;

③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內的單調性。

注意:外函數(shù)的定義域是內函數(shù)的值域。

4、分段函數(shù):值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

5、函數(shù)的奇偶性

⑴函數(shù)的定義域關于原點對稱是函數(shù)具有奇偶性的必要條件;

⑵是奇函數(shù);

⑶是偶函數(shù);

⑷奇函數(shù)在原點有定義,則;

⑸在關于原點對稱的單調區(qū)間內:奇函數(shù)有相同的單調性,偶函數(shù)有相反的單調性;

(6)若所給函數(shù)的解析式較為復雜,應先等價變形,再判斷其奇偶性;

1、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

2、對于函數(shù)f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

3、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;

4、一般地,對于函數(shù)y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。

5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;

6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。

高三年級數(shù)學知識點歸納

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x+

6、如果函數(shù)是由實際意義確定的解析式,應依據(jù)自變量的實際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調性法;

7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調性法

五、函數(shù)單調性的常用結論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的.單調性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對稱區(qū)間上的單調性相同,偶函數(shù)在對稱區(qū)間上的單調性相反。

5、常用函數(shù)的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結論:

1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。

4、兩個函數(shù)y=f(u)和u=g(x)復合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復合函數(shù)就是偶函數(shù);當兩個函數(shù)都是奇函數(shù)時,該復合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。

高三數(shù)學重點知識點相關文章:

高三數(shù)學考試必考的重要知識點歸納

高三數(shù)學知識點考點總結大全

高三數(shù)學復習重要知識點

高三數(shù)學必考知識點

高三數(shù)學的主要知識點筆記

高三數(shù)學第一輪復習知識點

高三數(shù)學知識點大全

高三數(shù)學知識點歸納

高三數(shù)學知識點梳理匯總

1350402