高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括
把每次訓(xùn)練都當(dāng)做高考,數(shù)學(xué)的復(fù)習(xí)離不開做題,但是做題量不能太大,做題的時候更應(yīng)該模擬高考的時間和場景,所以在復(fù)習(xí)的時候也在這個時間做題,適應(yīng)高考模式。以下是小編給大家整理的高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括,希望大家能夠喜歡!
高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括1
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實軸、虛軸:
點Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即
這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。
高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括2
1、集合的概念
集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設(shè)A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。
(2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。
(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。
高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括3
變化前的點坐標(biāo)(x,y)
坐標(biāo)變化
變化后的點坐標(biāo)
圖形變化平移橫坐標(biāo)不變,縱坐標(biāo)加上(或減去)n(n>0)個單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標(biāo)不變,橫坐標(biāo)加上(或減去)n(n>0)個單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標(biāo)不變,縱坐標(biāo)擴大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標(biāo)不變,橫坐標(biāo)擴大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標(biāo)不變,縱坐標(biāo)縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標(biāo)不變,橫坐標(biāo)縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標(biāo)同時擴大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標(biāo)同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
求與幾何圖形聯(lián)系的特殊點的坐標(biāo),往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點所在的象限,醒上相應(yīng)的符號。求坐標(biāo)分兩種情況:(1)求交點,如直線與直線的交點;(2)求距離,再將距離換算成坐標(biāo),通常作x軸或y軸的垂線,再解直角三角形。
高三數(shù)學(xué)課本學(xué)習(xí)的知識點概括相關(guān)文章:
★ 高三數(shù)學(xué)知識點總結(jié)及數(shù)學(xué)學(xué)習(xí)方法
★ 高三數(shù)學(xué)學(xué)習(xí)方法和技巧大全
★ 人教版高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)
★ 高三年級數(shù)學(xué)知識點整理總結(jié)