學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 > 高考必考的數學知識點大全

高考必考的數學知識點大全

時間: 業(yè)鴻0 分享

2023高考必考的數學知識點大全

臨近高考,同學們都在緊張地備考,你們知道在高考中,數學這一科可能會考大家哪些知識點嗎?下面是小編為大家整理的關于高考必考的數學知識點大全,歡迎大家來閱讀。

高考必考的數學知識點大全

高考數學的知識點

一、間斷點求極限

1、連續(xù)、間斷點以及間斷點的分類:判斷間斷點類型的基礎是求函數在間斷點處的左右極限;

2、可導和可微,分段函數在分段點處的導數或可導性,一律通過導數定義直接計算或檢驗存在的定義是極限 存在;

3、漸近線,(垂直、水平或斜漸近線);

4、多元函數積分學,二重極限的討論計算難度較大,??疾樽C明極限不存在。

二、下面我們重點講一下數列極限的典型方法。

(一)重要題型及點撥

1、求數列極限

求數列極限可以歸納為以下三種形式。

2、抽象數列求極限

這類題一般以選擇題的形式出現, 因此可以通過舉反例來排除。 此外,也可以按照定義、基本性質及運算法則直接驗證。

(二)求具體數列的極限,可以參考以下幾種方法:

a、利用單調有界必收斂準則求數列極限。

首先,用數學歸納法或不等式的放縮法判斷數列的單調性和有界性,進而確定極限存在性;其次,通過遞推關系中取極限,解方程, 從而得到數列的極限值。

b、利用函數極限求數列極限

如果數列極限能看成某函數極限的特例,形如,則利用函數極限和數列極限的關系轉化為求函數極限,此時再用洛必達法則求解。

(三)求項和或項積數列的極限,主要有以下幾種方法:

a、利用特殊級數求和法

如果所求的項和式極限中通項可以通過錯位相消或可以轉化為極限已知的一些形式,那么通過整理可以直接得出極限結果。

b、利用冪級數求和法

若可以找到這個級數所對應的冪級數,則可以利用冪級數函數的方法把它所對應的和函數求出,再根據這個極限的形式代入相應的變量求出函數值。

c、利用定積分定義求極限

若數列每一項都可以提出一個因子,剩余的項可用一個通項表示, 則可以考慮用定積分定義求解數列極限。

d、利用夾逼定理求極限

若數列每一項都可以提出一個因子,剩余的項不能用一個通項表示,但是其余項是按遞增或遞減排列的,則可以考慮用夾逼定理求解。

e、求項數列的積的極限

一般先取對數化為項和的形式,然后利用求解項和數列極限的方法進行計算。

高三數學必考的知識點

1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得.

(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域.

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.

2、求函數的最值與值域的區(qū)別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數的值域是(0,16],值是16,無最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響.

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.

重點高考數學知識點

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區(qū)間I內每一點都可導,就稱函數f(x)在區(qū)間I內可導。這時函數y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區(qū)間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間

1812281