學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 >

高考數(shù)學科目常考必備資料

時間: 小姚4561 分享

高考數(shù)學涉及方方面面,涵蓋的知識點也很多,知識是不斷積累到腦海里的,不能現(xiàn)用現(xiàn)看。以下是小編整理的高考數(shù)學??急貍滟Y料,希望可以提供給大家進行參考和借鑒。

高考數(shù)學科目??急貍滟Y料

高三數(shù)學函數(shù)知識點總結(jié)

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、如果函數(shù)是由實際意義確定的解析式,應(yīng)依據(jù)自變量的實際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調(diào)性法;

7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。

2、若f(x)為增(減)函數(shù),則—f(x)為減(增)函數(shù)。

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。

4、兩個函數(shù)y=f(u)和u=g(x)復合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復合函數(shù)就是偶函數(shù);當兩個函數(shù)都是奇函數(shù)時,該復合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。

高三數(shù)學知識點總結(jié)

1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2、判定兩個平面平行的方法:

(1)根據(jù)定義——證明兩平面沒有公共點;

(2)判定定理——證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

(3)證明兩平面同垂直于一條直線。

3、兩個平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒有公共點”;

(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

(3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

(5)夾在兩個平行平面間的平行線段相等;

(6)經(jīng)過平面外一點只有一個平面和已知平面平行。

高考數(shù)學必備公式

橢圓周長公式:L=2πb+4(a-b)

橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

橢圓面積計算公式

橢圓面積公式: S=πab

橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數(shù)為體,公式為用。

橢圓形物體 體積計算公式橢圓 的 長半徑_短半徑_PAI_高

弧長公式 l=a_r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2_l_r

錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h

斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長

柱體體積公式 V=s_h 圓柱體 V=pi_r2h

圖形周長 面積 體積公式

長方形的周長=(長+寬)×2

正方形的周長=邊長×4

長方形的面積=長×寬

正方形的面積=邊長×邊長

三角形的面積

已知三角形底a,高h,則S=ah/2

已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)

和:(a+b+c)_(a+b-c)_1/4

1793605