學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

有關(guān)高二數(shù)學下冊知識點

時間: 舒淇4599 分享

高二的數(shù)學應(yīng)該怎么去學呢?知識積累的越多,掌握的就會越熟練。下面小編為大家?guī)碛嘘P(guān)高二數(shù)學下冊知識點,歡迎大家參考閱讀,希望能夠幫助到大家!

高二數(shù)學下冊知識點

第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習中一定要反復(fù)去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是??汲ee點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。

第三章:函數(shù)的應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學會在這三者之間的靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。

高二數(shù)學下冊知識點歸納

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即“共同起點,指向被減”

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

3、數(shù)乘向量

實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對于任意實數(shù)λ,都有λa=0。

注:按定義知,如果λa=0,那么λ=0或a=0。

實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數(shù)與向量的乘法滿足下面的運算律

結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

數(shù)乘向量的消去律:①如果實數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

4、向量的的數(shù)量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數(shù)量積的坐標表示:a·b=x·x'+y·y'。

向量的數(shù)量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數(shù)量積的性質(zhì)

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數(shù)學下冊知識點總結(jié)

一、導(dǎo)數(shù)的應(yīng)用

1.用導(dǎo)數(shù)研究函數(shù)的最值

確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學習了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗下學習成果。

2.生活中常見的函數(shù)優(yōu)化問題

1)費用、成本最省問題

2)利潤、收益問題

3)面積、體積最(大)問題

二、推理與證明

1.歸納推理:歸納推理是高二數(shù)學的一個重點內(nèi)容,其難點就是有部分結(jié)論得到一般結(jié)論,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。

2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

三、不等式

對于含有參數(shù)的一元二次不等式解的討論

1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。

2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關(guān)系就是分類標準,如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

1609549