高二最新數(shù)學知識點大全
高二最新數(shù)學知識點大全2022
總結就是對一個時期的學習、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,不如立即行動起來寫一份總結吧。下面是小編給大家?guī)淼母叨钚聰?shù)學知識點大全,以供大家參考!
高二最新數(shù)學知識點大全
1、在中學我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉(zhuǎn)定義、實際上是直圓柱、直圓錐、直圓臺的定義。
這樣定義直觀形象,便于理解,而且對它們的性質(zhì)也易推導。
對于球的定義中,要注意區(qū)分球和球面的概念,球是實心的。
等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區(qū)分。
2、圓柱、圓錐、圓和球的性質(zhì)
(1)圓柱的性質(zhì),要強調(diào)兩點:一是連心線垂直圓柱的底面;二是三個截面的性質(zhì)——平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。
(2)圓錐的性質(zhì),要強調(diào)三點
①平行于底面的截面圓的性質(zhì):
截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。
②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:
易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠B≤BVC、
由于截面三角形的頂角不大于軸截面的頂角。
所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有
當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0、
③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式
l2=h2+R2
(3)圓臺的性質(zhì),都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調(diào)下面幾點:
①圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則
其中S1和S2分別為上、下底面面積。
的截面性質(zhì)的推廣。
③圓臺的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有
l2=h2+(R-r)2
圓臺的有關計算問題,常歸結為解這個直角梯形。
(4)球的性質(zhì),著重掌握其截面的性質(zhì)。
①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。
②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則
R2=r2+d2
即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。
3、圓柱、圓錐、圓臺和球的表面積
(1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開的。
①圓柱、圓錐、圓臺的側(cè)面展開圖,是求其側(cè)面積的基本依據(jù)。
圓柱的側(cè)面展開圖,是由底面圖的.周長和母線長組成的一個矩形。
②圓錐和側(cè)面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為
③圓臺的側(cè)面展開圖是一個由兩條母線長和上、下底面周長組成的扇環(huán),其扇環(huán)的圓心角為
這個公式有利于空間幾何體和其側(cè)面展開圖的互化
顯然,當r=0時,這個公式就是圓錐側(cè)面展開圖扇形的圓心角公式,所以,圓錐側(cè)面展開圖扇形的圓心角公式是圓臺相關角的特例。
(2)圓柱、圓錐和圓臺的側(cè)面公式為
S側(cè)=π(r+R)l
當r=R時,S側(cè)=2πRl,即圓柱的側(cè)面積公式。
當r=0時,S側(cè)=rRl,即圓錐的面積公式。
要重視,側(cè)面積間的這種關系。
(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。
推導出來,要用“微積分”等高等數(shù)學的知識,課本上不能算是一種證明。
求不規(guī)則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學完“微積分”的相關內(nèi)容后,不證自明,這里從略。
4、畫圓柱、圓錐、圓臺和球的直觀圖的方法——正等測
(1)正等測畫直觀圖的要求:
①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。
②在投影圖上取線段長度的方法是:在三軸上或平行于三軸的線段都取實長。
這里與斜二測畫直觀圖的方法不同,要注意它們的區(qū)別。
(2)正等測圓柱、圓錐、圓臺的直觀圖的區(qū)別主要是水平放置的平面圖形。
用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。
5、關于幾何體表面內(nèi)兩點間的最短距離問題
柱、錐、臺的表面都可以平面展開,這些幾何體表面內(nèi)兩點間最短距離,就是其平面內(nèi)展開圖內(nèi)兩點間的線段長。
由于球面不能平面展開,所以求球面內(nèi)兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。
高二下冊數(shù)學必修四知識點總結
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數(shù)法(適用于多項式函數(shù))
復合函數(shù)法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:
定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復合函數(shù)法
應用:把函數(shù)值進行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。
對稱變換y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x),關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關于直線x=a對稱;
高二數(shù)學上冊必修五知識點小結
1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。