高二數(shù)學知識點總結梳理
2022高二數(shù)學知識點總結梳理
因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。下面是小編給大家?guī)淼母叨?shù)學知識點總結梳理,以供大家參考!
高二數(shù)學知識點總結梳理
等差數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。
此外,數(shù)列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。
值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:
a2=a1_,
a3=a2_,
a4=a3_,
````````
an=an-1_,
將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。
此外,當q=1時該數(shù)列的前n項和Tn=a1_
當q≠1時該數(shù)列前n項的和Tn=a1_1-q^(n))/(1-q).
高二數(shù)學知識點總結最新
用樣本的數(shù)字特征估計總體的數(shù)字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍
(3)一組數(shù)據(jù)中的值和最小值對標準差的影響,區(qū)間的應用;
“去掉一個分,去掉一個最低分”中的科學道理
高二年級數(shù)學知識點講解
1.總體和樣本
在統(tǒng)計學中,把研究對象的全體叫做總體.
把每個研究對象叫做個體.
把總體中個體的總數(shù)叫做總體容量.
為了研究總體的有關性質,一般從總體中隨機抽取一部分:
研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機抽樣常用的方法:
抽簽法;隨機數(shù)表法;計算機模擬法;使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調查對象群體中的每一個對象編號;
(2)準備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調查
例:請調查你所在的學校的學生做喜歡的體育活動情況。
5.隨機數(shù)表法:
例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。
系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布??梢栽谡{查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
分層抽樣
1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準:
(1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
3.分層的比例問題:
(1)按比例分層抽樣:根據(jù)各種類型或層次中的單位數(shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結構。
用樣本的數(shù)字特征估計總體的數(shù)字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍
(3)一組數(shù)據(jù)中的值和最小值對標準差的影響,區(qū)間的應用;
“去掉一個分,去掉一個最低分”中的科學道理
兩個變量的線性相關
1、概念:
(1)回歸直線方程(2)回歸系數(shù)
2.最小二乘法
3.直線回歸方程的應用
(1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系
(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
(3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
4.應用直線回歸的注意事項
(1)做回歸分析要有實際意義;
(2)回歸分析前,先作出散點圖;
(3)回歸直線不要外延。