學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括

時(shí)間: 贊銳0 分享

我們只要在學(xué)習(xí)過(guò)程中重視思考問(wèn)題和探究問(wèn)題,你的能力就會(huì)在不知不覺(jué)中得到提高,為高三復(fù)習(xí)階段深化知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)提供基礎(chǔ)。以下是小編給大家整理的高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括,希望能助你一臂之力!

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括1

導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話(huà),函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線(xiàn)性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱(chēng)其在這一點(diǎn)可導(dǎo),否則稱(chēng)為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

對(duì)于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個(gè)函數(shù),稱(chēng)作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱(chēng)為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也來(lái)源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括2

直線(xiàn)的傾斜角:

定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

直線(xiàn)的斜率:

①定義:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。

②過(guò)兩點(diǎn)的直線(xiàn)的斜率公式。

注意:

(1)當(dāng)時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無(wú)關(guān);

(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到。

直線(xiàn)方程:

1.點(diǎn)斜式:y-y0=k(x-x0)

(x0,y0)是直線(xiàn)所通過(guò)的已知點(diǎn)的坐標(biāo),k是直線(xiàn)的已知斜率。x是自變量,直線(xiàn)上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線(xiàn)上任意一點(diǎn)的縱坐標(biāo)。

2.斜截式:y=kx+b

直線(xiàn)的斜截式方程:y=kx+b,其中k是直線(xiàn)的斜率,b是直線(xiàn)在y軸上的截距。該方程叫做直線(xiàn)的斜截式方程,簡(jiǎn)稱(chēng)斜截式。此斜截式類(lèi)似于一次函數(shù)的表達(dá)式。

3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線(xiàn)。

如果x1=x2,y1y2,那么此直線(xiàn)就是垂直于X軸的一條直線(xiàn),其方程為x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那么此直線(xiàn)就是垂直于Y軸的一條直線(xiàn),其方程為y=y1,也不能表示成上面的一般式。

4.截距式x/a+y/b=1

對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;Ax+By+C=0

將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括3

1、圓的定義

平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(x-a)^2+(y-b)^2=r^2

(1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

(2)求圓方程的方法

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

3、直線(xiàn)與圓的位置關(guān)系

直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線(xiàn),圓,圓心到l的距離為,則有;;

(2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

練習(xí)題:

2.若圓(x-a)2+(y-b)2=r2過(guò)原點(diǎn),則()

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】選B.因?yàn)閳A過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括相關(guān)文章

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)選修2

高二數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)詳細(xì)

高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識(shí)點(diǎn)新總結(jié)2020

高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括

我們只要在學(xué)習(xí)過(guò)程中重視思考問(wèn)題和探究問(wèn)題,你的能力就會(huì)在不知不覺(jué)中得到提高,為高三復(fù)習(xí)階段深化知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)提供基礎(chǔ)。以下是小編給大家整理的高二數(shù)學(xué)理科上冊(cè)的總知識(shí)點(diǎn)概括,希望能助你一臂之力!高二數(shù)學(xué)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1079326