高二數(shù)學(xué)必考知識點
越能愉快的學(xué)習(xí),產(chǎn)生快樂的感覺就越好。好希望每個人都能明白這個道理,能夠在有限的生命里懂得,在學(xué)習(xí)這無限的海洋中體會快樂,在快樂中學(xué)習(xí)!下面是小編給大家?guī)淼母叨?shù)學(xué)知識點,希望大家能夠喜歡!
高二數(shù)學(xué)必考知識點
1、圓的定義
平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有
(2)過圓外一點的切線:
①k不存在,驗證是否成立
②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高二數(shù)學(xué)必考知識點匯總
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即“共同起點,指向被減”
a=(x,y)b=(x',y')則a-b=(x-x',y-y').
4、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當(dāng)λ>0時,λa與a同方向;
當(dāng)λ<0時,λa與a反方向;
當(dāng)λ=0時,λa=0,方向任意。
當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當(dāng)∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當(dāng)∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:①如果實數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
3、向量的的數(shù)量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。
向量的數(shù)量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數(shù)學(xué)必考知識點大全
等差數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。
此外,數(shù)列前n項的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。
值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:
a2=a1_q,
a3=a2_q,
a4=a3_q,
````````
an=an-1_q,
將以上(n-1)項相乘,左右消去相應(yīng)項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。
此外,當(dāng)q=1時該數(shù)列的前n項和Tn=a1_n
當(dāng)q≠1時該數(shù)列前n項的和Tn=a1_(1-q^(n))/(1-q).
高二數(shù)學(xué)必考知識點相關(guān)文章:
★ 高二數(shù)學(xué)復(fù)習(xí)必背知識點歸納