學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

高二數(shù)學(xué)圓知識點(diǎn)

時間: 贊銳20 分享

我們?nèi)粘R姷降膱A形有很多,那你知道圓要什么公式,又與其他可以發(fā)生什么關(guān)系嗎?接下來小編將帶你們走近圓的世界,這是小編整理的高二數(shù)學(xué)圓知識點(diǎn),希望能幫到你。

高二數(shù)學(xué)圓知識點(diǎn)1

圓及圓的相關(guān)量的定義

1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫

做直徑。

3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角。

4.過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個的公共點(diǎn)叫做切點(diǎn)。

6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

高二數(shù)學(xué)圓知識點(diǎn)2

有關(guān)圓的字母表示方法

圓--⊙半徑—r弧--⌒直徑—d

扇形弧長/圓錐母線—l周長—C面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

5.一條弧所對的圓周角等于它所對的圓心角的一半。

6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

7.不在同一直線上的3個點(diǎn)確定一個圓。

8.一個三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

離):

AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

外離P>R+r;外切P=R+r;相交R-r

有關(guān)圓的計(jì)算公式

1.圓的周長C=2πr=πd

2.圓的面積S=s=πr?

3.扇形弧長l=nπr/180

4.扇形面積S=nπr?/360=rl/2

5.圓錐側(cè)面積S=πrl

高二數(shù)學(xué)圓知識點(diǎn)3

一、直線與圓:

1、直線的傾斜角 的范圍是

在平面直角坐標(biāo)系中,對于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線 重合時所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn) 斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、 , ,① ∥ , ; ② .

直線 與直線 的位置關(guān)系:

(1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

5、點(diǎn) 到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.① 相離  ② 相切 ?、?相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長

高二數(shù)學(xué)圓知識點(diǎn)3


高二數(shù)學(xué)圓知識點(diǎn)相關(guān)文章:

高二數(shù)學(xué)知識點(diǎn)總結(jié)

高二數(shù)學(xué)考點(diǎn)知識點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識點(diǎn)歸納

高二數(shù)學(xué)知識點(diǎn)總結(jié)詳細(xì)

高中數(shù)學(xué)橢圓方程知識點(diǎn)

高二數(shù)學(xué)知識點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識點(diǎn)必修

職業(yè)高中高二數(shù)學(xué)知識點(diǎn)

高二數(shù)學(xué)知識點(diǎn)總結(jié)人教版

1063475