人教版初三數(shù)學知識點復習資料備戰(zhàn)中考
高學習效率并非一朝一夕之事,需要長期的探索和積累。前人的經(jīng)驗是可以借鑒的,但必須充分結(jié)合自己的特點。影響學習效率的因素,有學習之內(nèi)的,但更多的因素在學習之外。那么你們知道關于人教版初三數(shù)學知識點復習資料備戰(zhàn)中考內(nèi)容還有哪些呢?下面是小編為大家準備2021年人教版初三數(shù)學知識點復習資料備戰(zhàn)中考,歡迎參閱。
人教版初三數(shù)學知識點復習資料備戰(zhàn)中考章一
因式分解的方法
1.十字相乘法
(1)把二次項系數(shù)和常數(shù)項分別分解因數(shù);
(2)嘗試十字圖,使經(jīng)過十字交叉線相乘后所得的數(shù)的和為一次項系數(shù);
(3)確定合適的十字圖并寫出因式分解的結(jié)果;
(4)檢驗。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個因式;
①找公因式可按照確定公因式的方法先確定系數(shù)再確定字母;
②提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。
3.待定系數(shù)法
(1)確定所求問題含待定系數(shù)的一般解析式;
(2)根據(jù)恒等條件,列出一組含待定系數(shù)的方程;
(3)解方程或消去待定系數(shù),從而使問題得到解決。
人教版初三數(shù)學知識點復習資料備戰(zhàn)中考章二
有理數(shù)、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數(shù):是初中數(shù)學的基礎內(nèi)容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現(xiàn),難易度屬于簡單。
【考察內(nèi)容】復數(shù)以及混合運算(期中、期末必考計算)數(shù)軸、相反數(shù)、絕對值和倒數(shù)(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬于易。
【考察內(nèi)容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內(nèi)容,主要學習內(nèi)容有(歸納、總結(jié)、延伸)應用題思維、步驟、文字題,根據(jù)已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現(xiàn)簡答題,難易度為易。
【考察內(nèi)容】
①方程及方程解的概念
②根據(jù)題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
相交線和平行線、實數(shù)、平面直角坐標系、二元一次方程組、不等式和不等式組和數(shù)據(jù)庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現(xiàn)。分值為3-4分,難易度為易。
【考察內(nèi)容】
①平行線的性質(zhì)(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質(zhì)解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬于易。
【考察內(nèi)容】
①考察平面直角坐標系內(nèi)點的坐標特征
②函數(shù)自變量的取值范圍和球函數(shù)的值
③考察結(jié)合圖像對簡單實際問題中的函數(shù)關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內(nèi)容】
①方程組的解法,解方程組
②根據(jù)題意列二元一次方程組解經(jīng)濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內(nèi)容:】
①一元一次不等式(組)的解法,不等式(組)解集的數(shù)軸表示,不等式(組)的整數(shù)解等,題型以選擇,填空為主。
②列不等式(組)解決經(jīng)濟問題,調(diào)配問題等,主要以解答題為主。
③留意不等式(組)和函數(shù)圖像的結(jié)合問題。
(5)數(shù)據(jù)庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現(xiàn),偶爾以選擇填空出現(xiàn)。難易度為中。
【考察內(nèi)容】
①常見統(tǒng)計圖和平均數(shù),眾數(shù),中位數(shù)的計算分析。
②方差,極差的應用分析
③與現(xiàn)實生活有關的實際問題的考察熱點。題目注重考查統(tǒng)計學的知識分析和數(shù)據(jù)處理。
三角形、全等三角形、軸對稱、整式的乘除與因式分解、分式。
(1)三角形:是初中數(shù)學的基礎,中考命題中的重點。中考試題分值約為18-24分,以填空,選擇,解答題,也會出現(xiàn)一些證明題目。
【考查內(nèi)容】
①三角形的性質(zhì)和概念,三角形內(nèi)角和定理,三邊關系,以及三角形全等的性質(zhì)與判定。
②三角形全等融入平行四邊形的證明
③三角形運動,折疊,旋轉(zhuǎn),拼接形成的新數(shù)學問題
④等腰三角形的性質(zhì)與判定,面積,周長等
⑤直角三角形的性質(zhì),勾股定理是重點
⑥三角形與圓的相關位置關系
⑦三角形中位線的性質(zhì)應用
(2)全等三角形
(3)軸對稱:圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現(xiàn)解答題。
【考察內(nèi)容】
①軸對稱和軸對稱圖形的性質(zhì)判別。
②注意鏡面對稱與實際問題的解決。
(4)整式的乘除與因式分解:中考試題中分值約為4分,題型以選擇,填空為主,難易度屬于易。
【考察內(nèi)容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公司的幾何意義
③利用提公因式法和公式法分解因式。
(5)分式:中考試題中分值約為6-8分,主要以填空,簡答計算題型出現(xiàn),難易度屬于中。
【考察內(nèi)容】
①分式的概念,性質(zhì),意義
②分式的運算,化簡求值。
③列分式方程解決實際問題。
二次根式、勾股定理、四邊形、一次函數(shù)和數(shù)據(jù)的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知識是近幾年各地中考命題的熱點之一,考察題型為選擇題,填空題,應用題為主,分值一般8-12分,難易度為難。
【考察內(nèi)容】
①常見銳角的三角函數(shù)值的計算
②根據(jù)圖形計算距離,高度,角度的應用題
③根據(jù)題中給出的信息構建圖形,建立數(shù)學模型,然后用解直角三角形的知識解決問題。
(3)四邊形:初中數(shù)學中考中的重點內(nèi)容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。
【考察內(nèi)容】
①多邊形的內(nèi)角和,外角和等問題
②圖形的鑲嵌問題
③平行四邊形,矩形,菱形,正方形,等腰梯形的性質(zhì)和判定。
(4)一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現(xiàn)。
【考察內(nèi)容】
①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。
②會根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
③能用一次函數(shù)解決實際問題。
④考察一次函數(shù)與二元一次方程組,一元一次不等式的關系。
(5)數(shù)據(jù)的分析
二次函數(shù)、一元二次方程、旋轉(zhuǎn)、圓和概率初步。
(1)二次函數(shù):二次函數(shù)的圖像和性質(zhì)是中考數(shù)學命題的熱點,難點。試題難度一般為難。常見選擇,填空題分值為3-5分,綜合題分值為10-12分。
【考察內(nèi)容】
①能通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。
②能用數(shù)形結(jié)合,歸納等熟悉思想,根據(jù)二次函數(shù)的表達式(圖像)確定二次的開口方向,對稱軸和頂點的坐標,并獲得更多信息。
③綜合運用方程,幾何圖形,函數(shù)等知識點解決問題。
(2)一元二次方程:中考分值約為3-5分,題型主要以選擇,填空為主,極少出現(xiàn)簡答,難易度為易。
【考察內(nèi)容】
①方程及方程解的概念
②根據(jù)題意列一元一次方程
③解一元一次方程。
(3)旋轉(zhuǎn):圖形的平移,旋轉(zhuǎn)是中考題的新題型,熱點題型,在試題比重,逐年上升。分值一般為5-8分,題型以填空,選擇,作圖為主,偶爾也會出現(xiàn)解答題。
【考察內(nèi)容】
①中心對稱和中心對稱圖形的性質(zhì)
②旋轉(zhuǎn)和平移的性質(zhì)。
(4)圓:圓和圓的有關性質(zhì)與圓的有關計算是近幾年各地中考命題的重點內(nèi)容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結(jié)論開放探索題作為新的題型,分值一般是6-12分,難易度為中。
【考察內(nèi)容】
①圓的有關性質(zhì)的應用。垂徑定理是重點。
②直線和圓,圓和圓的位置關系的判定及應用。
③弧長,扇形面積,圓柱,圓錐的側(cè)面積和全面積的計算
④圓與相似三角形,三角函數(shù)的綜合運用以及有關的開放題,探索題。
(5)概率初步:分值一般3-6分,題型以選擇,填空常見,更多以解答題目為主,難易度為中。
【考察內(nèi)容】
①簡答事件的概率求解,圖表法和數(shù)形圖法
②利用概率解決實際,公平性問題等
③注意概率知識與方程相結(jié)合的綜合性試題,選材貼近生活,越來越新。
初三下冊
反比例函數(shù)、相似、銳角三角函數(shù)和投影與視圖。
(1)反比例函數(shù):反比例函數(shù)的圖像和性質(zhì)是中考數(shù)學命題的重要內(nèi)容,試題新穎,題型靈活多樣,所占分值約為3-8分,難易度屬于難。
【考察內(nèi)容】
①會畫反比例函數(shù)的圖像,掌握基本性質(zhì)。
②能根據(jù)條件確定反比例函數(shù)的表達式。
③能用反比例函數(shù)解決實際問題。
(2)相似:圖形的形似是平面幾何中極為重要的內(nèi)容,是中考數(shù)學中的重點考察內(nèi)容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬于難。
【考察內(nèi)容】
①相似三角形的性質(zhì)和判別方法,是重點。
②相似多邊形的認識,黃金分割的應用。
③相似形與三角形,平行四邊形的綜合性題目是難點。
(3)銳角三角函數(shù)
(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現(xiàn)。
【考察內(nèi)容】
①常見幾何體的三視圖
②常見幾何體的展開和折疊,展開和折疊是考試的熱點,值得注意。
③利用相似結(jié)合平行投影和中心投影解決實際問題。
(不同地區(qū)分值不同,可供參考)
選擇題:3分一個,共14個,總分42分。
填空題:3分一個,共5個,總分15分。
解答題:共7題,總分63分。
(一)線段、角的計算與證明問題
中考中的簡答題一般是分為兩到三部分的。第一部分基本上都是簡單題和中檔題,目的在于考查基礎。第二部分第二部分往往就是開始拉分的中難題了。
(二)列方程(組)解決應用問題
在中考中,方程是初中數(shù)學當中最重要的部分,所以也是中考必考內(nèi)容。從近年來中考來看,結(jié)合時事熱點考的比較多,所以還需要考生有一些實際生活經(jīng)驗。
(三)閱讀理解問題
閱讀理解問題是中考中的一個亮點。閱讀理解往往是先給一個材料或介紹一個超綱的知識或給出一個針對某一種題目的解法,然后再給出條件出題。
(四)多種函數(shù)交叉綜合問題
初中接觸的函數(shù)主要有一次函數(shù)、二次函數(shù)和反比例函數(shù)。這類題目本身并不會太難,很少作為壓軸題目出現(xiàn),一般都是作為一道中檔次題目出現(xiàn)來考查學生對函數(shù)的掌握。
(五)動態(tài)幾何
從歷年的中考來看,動態(tài)幾何往往作為壓軸的題目出現(xiàn),得分率也是最低的。動態(tài)幾何一般分為兩類,一類是代數(shù)綜合方面,在坐標系中,動直線一般是用多種函數(shù)交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設立動點,考查學生的綜合分析能力。
(六)圖形位置關系
中學數(shù)學當中,圖形位置關系主要包括點、線、三角形、矩形和正方形及它們之間的關系。在中考中會包括在函數(shù)、坐標系及幾何題中,其中最重要的是三角形的各種問題。
人教版初三數(shù)學知識點復習資料備戰(zhàn)中考章三
軸對稱知識點
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關于某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關于x軸對稱的點的坐標為(x,-y)
點(x,y)關于y軸對稱的點的坐標為(-x,y)
點(x,y)關于原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內(nèi)角相等,等于60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等于斜邊的一半。
不等式
1.掌握不等式的基本性質(zhì),并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大?。?a、b分別表示兩個實數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式兩邊同時乘以分母的最小公倍數(shù)。
②去括號:括號前是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變。括號前是“-”,把括號和它前面的"-"去掉后,原括號里各項的符號都要改變。(改成與原來相反的符號。
③移項:把方程兩邊都加上(或減去)同一個數(shù)或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
④合并同類項:通過合并同類項把一元一次方程式化為最簡單的形式:ax=b(a≠0)。
⑤系數(shù)化為1。
2.圖像法:一元一次方程ax+b=0(a≠0)的根就是它所對應的一次函數(shù)f(x)=ax+b函數(shù)值為0時,自變量x的值,即一次函數(shù)圖象與x軸交點的橫坐標。
3.求根公式法:對于關于x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a。
整式
1.整式:整式為單項式和多項式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數(shù)不能含有字母。
2.乘法
(1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
(2)冪的乘方,底數(shù)不變,指數(shù)相乘。
(3)積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。
3.整式的除法
(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
(2)任何不等于零的數(shù)的零次冪為1。
分數(shù)的性質(zhì)
1.分數(shù)中間的一條橫線叫做分數(shù)線,分數(shù)線上面的數(shù)叫做分子,分數(shù)線下面的數(shù)叫做分母。讀作幾分之幾。
2.分數(shù)可以表述成一個除法算式:如二分之一等于1除以2。其中,1分子等于被除數(shù),-分數(shù)線等于除號,2分母等于除數(shù),而0.5分數(shù)值則等于商。
3.分數(shù)還可以表述為一個比,例如;二分之一等于1:2,其中1分子等于前項,—分數(shù)線等于比號,2分母等于后項,而0.5分數(shù)值則等于比值。
4.當分子與分母同時乘或除以相同的數(shù)(0除外),分數(shù)值不會變化。因此,每一個分數(shù)都有無限個與其相等的分數(shù)。利用此性質(zhì),可進行約分與通分。
5.一個分數(shù)不是有限小數(shù),就是無限循環(huán)小數(shù),像π等這樣的無限不循環(huán)小數(shù),是不可能用分數(shù)代替的。
正負數(shù)加減法則順口溜
正正相加,和為正。
負負相加,和為負。
正減負來,得為正。
負減正來,得為負。
其余沒說,看大小。
誰大就往,誰邊倒。
人教版初三數(shù)學知識點復習資料備戰(zhàn)中考相關文章: