人教版七年級數(shù)學必考知識點
每一門科目都有自己的學習方法,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。那么關(guān)于七年級數(shù)學必考知識點有哪些呢?以下是小編準備的一些人教版七年級數(shù)學必考知識點,僅供參考。
七年級數(shù)學知識點
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
正有理數(shù) 整數(shù)
有理數(shù) 零 有理數(shù)
負有理數(shù) 分數(shù)
2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零
3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0?;橄喾磾?shù)的兩個數(shù)的絕對值相等。
6、有理數(shù)比較大?。赫龜?shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。
7、有理數(shù)的運算:
(1)五種運算:加、減、乘、除、乘方
多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。
有理數(shù)加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加。
異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
一個數(shù)同0相加,仍得這個數(shù)。
互為相反數(shù)的兩個數(shù)相加和為0。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!
有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)與0相乘,積仍為0。
有理數(shù)除法法則:
兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。
0除以任何非0的數(shù)都得0。
注意:0不能作除數(shù)。
有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。
正數(shù)的任何次冪都是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)。
(2)有理數(shù)的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
(3)運算律
加法交換律 加法結(jié)合律
乘法交換律 乘法結(jié)合律
乘法對加法的分配律
8、科學記數(shù)法
一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。(n=整數(shù)位數(shù)-1)
第三章 整式及其加減
1、代數(shù)式
用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;
②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;
③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。
※代數(shù)式的書寫格式:
①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;
②數(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;
③帶分數(shù)與字母相乘時,應(yīng)先把帶分數(shù)化成假分數(shù),如應(yīng)寫作;
④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分數(shù)線具有“÷”號和括號的雙重作用。
⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。
2、整式:單項式和多項式統(tǒng)稱為整式。
①單項式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。
注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。
②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。
3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
注意:
①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。
②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);
③幾個常數(shù)項也是同類項。
4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
5、去括號法則
①根據(jù)去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。
②根據(jù)分配律去括號:
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類項。
第四章 基本平面圖形
2、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
3、線段的性質(zhì)
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊?;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。
6、角的表示
角的表示方法有以下四種:
①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。
7、角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的`兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當它又和始邊重合時,所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數(shù)的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
3、等式的性質(zhì)
(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。
(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。
4、一元一次方程
只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1
第六章 數(shù)據(jù)的收集與整理
1、普查與抽樣調(diào)查
為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統(tǒng)計圖
扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)
圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)
3、頻數(shù)直方圖
頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。
4、各種統(tǒng)計圖的特點
條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。
折線統(tǒng)計圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
初一數(shù)學經(jīng)典公式
一、【幾何形體計算公式】
1、長方形的周長=(長+寬)×2=(a+b)×2
2、正方形的周長=邊長×4=4a
3、長方形的面積=長×寬=ab
4、正方形的面積=邊長×邊長=a.a=a^2
5、三角形的面積=底×高÷2=ah/2
6、平行四邊形的面積=底×高=ah
7、梯形的面積=(上底+下底)×高÷2=(a+b)h/2
8、直徑=半徑×2=2、半徑=直徑÷2=d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr
10、圓的面積=圓周率×半徑×半徑 = πr^2
二、【三角函數(shù)公式】
1)兩角和公式
sin(A+B)=sinAcosB+cosAsinB 、sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB 、cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) 、tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) 、ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2)倍角公式
tan2A=2tanA/(1-tan2A) 、ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3)半角公式
sin(A/2)=√((1-cosA)/2))、 cos(A/2)=√((1+cosA)/2) 、cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) 、tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))、 ctg(A/2)=-√((1+cosA)/((1-cosA))
4)和差化積
2sinAcosB=sin(A+B)+sin(A-B) 、2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 、cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB 、tanA-tanB=sin(A-B)/cosAcosB
三、【某些數(shù)列前n項和】
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
四【其他常用數(shù)學公式】
乘法與因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c__h
斜棱柱側(cè)面積 S=c'__h
正棱錐側(cè)面積 S=1/2c__h'
正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=Π(R+r)l
球的表面積 S=4Π__r2
圓柱側(cè)面積 S=c__h=2Π__h
圓錐側(cè)面積 S=1/2__c__l=Π__r__l
弧長公式 l=a__r a是圓心角的弧度數(shù)r >0
扇形面積公式 s=1/2__l__r
錐體體積公式 V=1/3__S__H
圓錐體體積公式 V=1/3__Π__r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s__h
圓柱體 V=Π__r2h 圓錐是圓柱的1/3。 圓柱是圓錐的3倍。
分子相同,分母越小分數(shù)就大。 分母相同,分子越大分數(shù)就小。 上面是分子,下面是分母。
七年級數(shù)學高效學習方法
要注意基礎(chǔ)知識的掌握
不要過分關(guān)注成績的高低,初一數(shù)學無論從概念還是技能都是初中數(shù)學的基礎(chǔ),“基礎(chǔ)不牢、地動山搖”這句話就體現(xiàn)了初一數(shù)學的重要地位。
這種基礎(chǔ)性體現(xiàn)在有理數(shù)的四則混合運算、整式的計算、方程思想的體現(xiàn)、簡單幾何圖形的規(guī)律總結(jié)等多方面。一次考試的成績很難將這些基礎(chǔ)性地位的知識考查全面,而過于關(guān)注考試成績一方面容易讓孩子有一種“學習就是為了考試”的心態(tài)而忽略了學習的樂趣。
另一方面也容易讓孩子對考試的內(nèi)容過度關(guān)注而忽略了更重要的其他基礎(chǔ)知識,這對一個初一孩子來說是非常危險的。
培養(yǎng)自主學習能力
在考試中,總是看見有些同學的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學題都不是一眼就能看出它的解法和結(jié)果的。
要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。
也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現(xiàn)。