學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初一學(xué)習(xí)方法>七年級(jí)數(shù)學(xué)>

初一數(shù)學(xué)期中考試知識(shí)點(diǎn)

時(shí)間: 躍瀚0 分享

知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編給大家整理的一些初一數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。

初一數(shù)學(xué)期中考試知識(shí)點(diǎn)

1.有理數(shù):

(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);

(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.

3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

4.絕對(duì)值:

(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;

(2)絕對(duì)值可表示為:

絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;

(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數(shù)比大?。?1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0

初一數(shù)學(xué)期中考試知識(shí)點(diǎn)大全

1 過(guò)兩點(diǎn)有且只有一條直線

2 兩點(diǎn)之間線段最短

3 同角或等角的補(bǔ)角相等

4 同角或等角的余角相等

5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯(cuò)角相等,兩直線平行

11 同旁?xún)?nèi)角互補(bǔ),兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯(cuò)角相等

14 兩直線平行,同旁?xún)?nèi)角互補(bǔ)

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180

18 推論1 直角三角形的兩個(gè)銳角互余

19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60

34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35 推論1 三個(gè)角都相等的三角形是等邊三角形

36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形

37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半

38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 ?

40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42 定理1 關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形

43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上

初一數(shù)學(xué)知識(shí)點(diǎn)

正數(shù)和負(fù)數(shù)

⒈、正數(shù)和負(fù)數(shù)的概念

負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)

注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)

②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。

2、具有相反意義的量

若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

零上8℃表示為:+8℃;零下8℃表示為:—8℃

3、0表示的意義

(1)0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;

(2)0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:

(3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。

有理數(shù)

1、有理數(shù)的概念

(1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù))

(2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù)

(3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。

理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)

注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。

七年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

變量之間的關(guān)系

一理論理解

1、若Y隨X的變化而變化,則X是自變量Y是因變量。

自變量是主動(dòng)發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量,數(shù)值保持不變的量叫做常量。

3、若等腰三角形頂角是y,底角是x,那么y與x的關(guān)系式為y=180-2x.

2、能確定變量之間的關(guān)系式:相關(guān)公式①路程=速度×?xí)r間②長(zhǎng)方形周長(zhǎng)=2×(長(zhǎng)+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×?xí)r間。⑤總價(jià)=單價(jià)×總量。⑥平均速度=總路程÷總時(shí)間

二、列表法:采用數(shù)表相結(jié)合的形式,運(yùn)用表格可以表示兩個(gè)變量之間的關(guān)系。列表時(shí)要選取能代表自變量的一些數(shù)據(jù),并按從小到大的順序列出,再分別求出因變量的對(duì)應(yīng)值。列表法的特點(diǎn)是直觀,可以直接從表中找出自變量與因變量的對(duì)應(yīng)值,但缺點(diǎn)是具有局限性,只能表示因變量的一部分。

三.關(guān)系式法:關(guān)系式是利用數(shù)學(xué)式子來(lái)表示變量之間關(guān)系的等式,利用關(guān)系式,可以根據(jù)任何一個(gè)自變量的值求出相應(yīng)的因變量的值,也可以已知因變量的值求出相應(yīng)的自變量的值。

四、圖像注意:a.認(rèn)真理解圖象的含義,注意選擇一個(gè)能反映題意的圖象;b.從橫軸和縱軸的實(shí)際意義理解圖象上特殊點(diǎn)的含義(坐標(biāo)),特別是圖像的起點(diǎn)、拐點(diǎn)、交點(diǎn)

八、事物變化趨勢(shì)的描述:對(duì)事物變化趨勢(shì)的描述一般有兩種:

1.隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數(shù)語(yǔ)言描述也可:因變量y隨著自變量x的增加(大)而增加(大));

2.隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數(shù)語(yǔ)言描述也可:因變量y隨著自變量x的增加(大)而減小).

注意:如果在整個(gè)過(guò)程中事物的變化趨勢(shì)不一樣,可以采用分段描述.例如在什么范圍內(nèi)隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等.

九、估計(jì)(或者估算)對(duì)事物的估計(jì)(或者估算)有三種:

1.利用事物的變化規(guī)律進(jìn)行估計(jì)(或者估算).例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數(shù)-首數(shù))/次數(shù)或相差年數(shù))等等;

2.利用圖象:首先根據(jù)若干個(gè)對(duì)應(yīng)組值,作出相應(yīng)的圖象,再在圖象上找到對(duì)應(yīng)的點(diǎn)對(duì)應(yīng)的因變量y的值;

3.利用關(guān)系式:首先求出關(guān)系式,然后直接代入求值即可.

初一下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

相交線與平行線

一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

二、知識(shí)要點(diǎn)

1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱(chēng)這兩條直線相交;如果兩條直線沒(méi)有公共點(diǎn),稱(chēng)這兩條直線平行。

3、兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;

+=180°。

4、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=;

=。

5、兩條直線相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱(chēng)這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。

垂線的性質(zhì):

性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫點(diǎn)到直線的距離。

6、同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角基本特征:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣

的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;

與是同位角;與是同位角;與是同位角。

②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁?xún)?nèi)角。圖3中,共有對(duì)同旁?xún)?nèi)角:與是同旁?xún)?nèi)角;與是同旁?xún)?nèi)角。

初一數(shù)學(xué)方法技巧

1.請(qǐng)概括的說(shuō)一下學(xué)習(xí)的方法

曰:“像做其他事一樣,學(xué)習(xí)數(shù)學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習(xí),展開(kāi)聯(lián)想,多做總結(jié),找出合情合理。

2.請(qǐng)談?wù)劤皩W(xué)習(xí)的好處

曰:“首先,超前學(xué)習(xí)能挖掘出自身的潛力,培養(yǎng)自學(xué)能力。經(jīng)過(guò)超前學(xué)習(xí),會(huì)發(fā)現(xiàn)自己能獨(dú)立解決許多問(wèn)題,對(duì)提高自信心,培養(yǎng)學(xué)習(xí)興趣很有幫助。”

其次,夠消除對(duì)新知識(shí)的“隱患”。超前學(xué)習(xí)能夠發(fā)現(xiàn)在現(xiàn)有的基礎(chǔ)上,自己對(duì)新知識(shí)認(rèn)識(shí)的不妥之處。相反地,若直接聽(tīng)別人說(shuō)。似乎自己也能一開(kāi)始就達(dá)到這種理解水平,實(shí)踐證明,并非這樣。

再次,超前學(xué)習(xí)中的有些內(nèi)容,當(dāng)時(shí)不能透徹理解,但經(jīng)過(guò)深思之后,即使擱置一邊,大腦也會(huì)潛意識(shí)“加工”。當(dāng)教師進(jìn)度進(jìn)行到這塊內(nèi)容時(shí),我們做第二次理解,會(huì)深刻的多。

最后,超前學(xué)習(xí)能提高聽(tīng)課質(zhì)量。超前學(xué)習(xí)以后,我們發(fā)現(xiàn)新知識(shí)中的多數(shù)自己完全可以理解。只有少數(shù)地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時(shí)間放“這少數(shù)地方”的理解上,即“好鋼用在刀刃上”。事實(shí)上,一節(jié)課,能集中注意力的時(shí)間并不太多。

3.請(qǐng)談?wù)劼?lián)想與總結(jié)

曰:聯(lián)想與總結(jié)貫穿與學(xué)習(xí)過(guò)程中的始終。對(duì)每一知識(shí)的認(rèn)識(shí),必定要有認(rèn)識(shí)基礎(chǔ)。尋找認(rèn)識(shí)基礎(chǔ)的過(guò)程即是聯(lián)想,而認(rèn)識(shí)基礎(chǔ)的是對(duì)以前知識(shí)的總結(jié)。以前總結(jié)的越簡(jiǎn)潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識(shí)熔進(jìn)原來(lái)的知識(shí)結(jié)構(gòu)中為以后的某次聯(lián)想奠定基礎(chǔ)。聯(lián)想與總結(jié)在解題中特別有效。也許你以前并沒(méi)有這樣的認(rèn)識(shí),但解題能力卻很強(qiáng),這說(shuō)明你很聰明,你在不自覺(jué)中使用這種做法。如果你能很明確的認(rèn)識(shí)這一點(diǎn),你的能力會(huì)更強(qiáng)。

4.那么我們?cè)鯓宇A(yù)習(xí)呢?

曰:“先說(shuō)說(shuō)學(xué)習(xí)的目標(biāo):(1)知道知識(shí)產(chǎn)生的背景,弄清知識(shí)形成的過(guò)程。

(2)或早或晚的知道知識(shí)的地位和作用:(3)總結(jié)出認(rèn)識(shí)問(wèn)題的規(guī)律(或說(shuō)出認(rèn)識(shí)問(wèn)題使用了以前的什么規(guī)律)。

再說(shuō)具體的做法:(1)對(duì)概念的理解。數(shù)學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時(shí)借助字面的含義:有時(shí)借助其他學(xué)科知識(shí)。有時(shí)借助圖形……理解概念的境界是意會(huì)。一定要在理解概念上下一番苦功夫后再做題。

(2)對(duì)公式定理的預(yù)習(xí),公式定理是使用最多的“規(guī)律”的總結(jié)。如:完全平方公式,勾股定理等。往往公式的推導(dǎo)定理的證明蘊(yùn)含著豐富的數(shù)學(xué)方法及相當(dāng)有用的解題規(guī)律。如三角形內(nèi)角平分線定理的證明。我們應(yīng)當(dāng)先自己推導(dǎo)公式或證明定理,若做不成再參考別人的做法。無(wú)論是自己完成的,還是看別人的,都要說(shuō)出這樣做是怎樣想出來(lái)的。

(3)對(duì)于例題及習(xí)題的處理見(jiàn)上面的(2)及下面的第五條。

初一數(shù)學(xué)期中考試知識(shí)點(diǎn)相關(guān)文章

初一數(shù)學(xué)必備知識(shí)點(diǎn)

初一數(shù)學(xué)期末考試重點(diǎn)有哪些

七年級(jí)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)

新初一數(shù)學(xué)的21個(gè)知識(shí)點(diǎn)與粗心現(xiàn)象分析

初一數(shù)學(xué)人教版知識(shí)點(diǎn)

七年級(jí)數(shù)學(xué)期中考試總結(jié)

初一數(shù)學(xué)知識(shí)點(diǎn)歸納華師版

初一數(shù)學(xué)上冊(cè)期中考試卷及答案

初一數(shù)學(xué)知識(shí)點(diǎn)

春季學(xué)期七年級(jí)數(shù)學(xué)期中考試試題

初一數(shù)學(xué)期中考試知識(shí)點(diǎn)

知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編給大家整理的一些初一數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。初一數(shù)學(xué)期中考試知識(shí)點(diǎn)1
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1176238