學習啦>學習方法>備考資料>

勾股定理數(shù)學知識提綱

時間: 自暢0 分享

數(shù)學是中考重要科目,想要學好數(shù)學,首先要找到學習的竅門,這樣可以讓我們事半功倍。下面小編給大家分享一些勾股定理數(shù)學知識提綱,希望能夠幫助大家,歡迎閱讀!

勾股定理數(shù)學知識提綱

勾股定理 直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即

a2+b2=c2.

勾股定理逆定理 如果三角形三邊長a,b,c有下面關系:

a2+b2=c2

那么這個三角形是直角三角形.

早在3000年前,我國已有“勾廣三,股修四,徑陽五”的說法.

關于勾股定理,有很多證法,在我國它們都是用拼圖形面積方法來證明的.下面的證法1是歐幾里得證法.

證法1 如圖2-16所示.在Rt△ABC的外側,以各邊為邊長分別作正方形ABDE,BCHK,ACFG,它們的面積分別是c2,a2,b2.下面證明,大正方形的面積等于兩個小正方形的面積之和.

過C引CM∥BD,交AB于L,連接BG,CE.因為

AB=AE,AC=AG,∠CAE=∠BAG,

所以△ACE≌△AGB(SAS).而

所以 SAEML=b2. ①

同理可證 SBLMD=a2. ②

①+②得

SABDE=SAEML+SBLMD=b2+a2,

即 c2=a2+b2.

證法2 如圖2-17所示.將Rt△ABC的兩條直角邊CA,CB分別延長到D,F(xiàn),使AD=a,BF=b.完成正方形CDEF(它的邊長為a+b),又在DE上截取DG=b,在EF上截取EH=b,連接AG,GH,HB.由作圖易知

△ADG≌△GEH≌△HFB≌△ABC,

所以

AG=GH=HB=AB=c,

∠BAG=∠AGH=∠GHB=∠HBA=90°,

因此,AGHB為邊長是c的正方形.顯然,正方形CDEF的面積等于正方形AGHB的面積與四個全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面積和,即

化簡得 a2+b2=c2.

證法3 如圖2-18.在直角三角形ABC的斜邊AB上向外作正方形ABDE,延長CB,自E作EG⊥CB延長線于G,自D作DK⊥CB延長線于K,又作AF, DH分別垂直EG于F,H.由作圖不難證明,下述各直角三角形均與Rt△ABC全等:

△AFE≌△EHD≌△BKD≌△ACB.

設五邊形ACKDE的面積為S,一方面

S=SABDE+2S△ABC, ①

另一方面

S=SACGF+SHGKD+2S△ABC. ②

由①,②

所以 c2=a2+b2.

關于勾股定理,在我國古代還有很多類似上述拼圖求積的證明方法,我們將在習題中展示其中一小部分,它們都以中國古代數(shù)學家的名字命名.

利用勾股定理,在一般三角形中,可以得到一個更一般的結論.

定理 在三角形中,銳角(或鈍角)所對的邊的平方等于另外兩邊的平方和,減去(或加上)這兩邊中的一邊與另一邊在這邊(或其延長線)上的射影的乘積的2倍.

證 (1)設角C為銳角,如圖2-19所示.作AD⊥BC于D, 則CD就是AC在BC上的射影.在直角三角形ABD中,

AB2=AD2+BD2, ①

在直角三角形ACD中,

AD2=AC2-CD2, ②

BD2=(BC-CD)2, ③

②,③代入①得

AB2=(AC2-CD2)+(BC-CD)2

=AC2-CD2+BC2+CD2-2BC?CD

=AC2+BC2-2BC?CD,

c2=a2+b2-2a?CD. ④

(2)設角C為鈍角,如圖2-20所示.過A作AD與BC延長線垂直于D,則CD就是AC在BC(延長線)上的射影.在直角三角形ABD中,

AB2=AD2+BD2, ⑤

在直角三角形ACD中,

AD2=AC2-CD2, ⑥

BD2=(BC+CD)2, ⑦

將⑥,⑦代入⑤得

AB2=(AC2-CD2)+(BC+CD)2

=AC2-CD2+BC2+CD2+2BC?CD

=AC2+BC2+2BC?CD,

c2=a2+b2+2a?cd. ⑧

綜合④,⑧就是我們所需要的結論

特別地,當∠C=90°時,CD=0,上述結論正是勾股定理的表述:

c2=a2+b2.

因此,我們常又稱此定理為廣勾股定理(意思是勾股定理在一般三角形中的推廣).

由廣勾股定理我們可以自然地推導出三角形三邊關系對于角的影響.在△ABC中,

(1)若c2=a2+b2,則∠C=90°;

(2)若c2

(3)若c2>a2+b2,則∠C>90°.

勾股定理及廣勾股定理深刻地揭示了三角形內(nèi)部的邊角關系,因此在解決三角形(及多邊形)的問題中有著廣泛的應用.

例1 如圖2-21所示.已知:在正方形ABCD中,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.求證:AB2=2FG2.

分析 注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,從而有AF2=2FG2,因而應有AF=AB,這啟發(fā)我們?nèi)プC明△ABE≌△AFE.

證 因為AE是∠FAB的平分線,EF⊥AF,又AE是△AFE與△ABE的公共邊,所以

Rt△AFE≌Rt△ABE(AAS),

所以 AF=AB. ①

在Rt△AGF中,因為∠FAG=45°,所以

AG=FG,

AF2=AG2+FG2=2FG2. ②

由①,②得

AB2=2FG2.

說明 事實上,在審題中,條件“AE平分∠BAC”及“EF⊥AC于F”應使我們意識到兩個直角三角形△AFE與△ABE全等,從而將AB“過渡”到AF,使AF(即AB)與FG處于同一個直角三角形中,可以利用勾股定理進行證明了.

例2 如圖2-22所示.AM是△ABC的BC邊上的中線,求證:AB2+AC2=2(AM2+BM2).

證 過A引AD⊥BC于D(不妨設D落在邊BC內(nèi)).由廣勾股定理,在△ABM中,

AB2=AM2+BM2+2BM?MD. ①

在△ACM中,

AC2=AM2+MC2-2MC?MD. ②

①+②,并注意到MB=MC,所以

AB2+AC2=2(AM2+BM2). ③

如果設△ABC三邊長分別為a,b,c,它們對應邊上的中線長分別為ma,mb,mc,由上述結論不難推出關于三角形三條中線長的公式.

推論 △ABC的中線長公式:

說明 三角形的中線將三角形分為兩個三角形,其中一個是銳角三角形,另一個是鈍角三角形(除等腰三角形外).利用廣勾股定理恰好消去相反項,獲得中線公式.①′,②′,③′中的ma,mb,mc分別表示a,b,c邊上的中線長.

例3 如圖2-23所示.求證:任意四邊形四條邊的平方和等于對角線的平方和加對角線中點連線平方的4倍.

分析 如圖2-23所示.對角線中點連線PQ,可看作△BDQ的中線,利用例2的結論,不難證明本題.

證 設四邊形ABCD對角線AC,BD中點分別是Q,P.由例2,在△BDQ中,

2BQ2+2DQ2=4PQ2+BD2. ①

在△ABC中,BQ是AC邊上的中線,所以

在△ACD中,QD是AC邊上的中線,所以

將②,③代入①得

=4PQ2+BD2,

AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.

說明 本題是例2的應用.善于將要解決的問題轉化為已解決的問題,是人們解決問題的一種基本方法,即化未知為已知的方法.下面,我們再看兩個例題,說明這種轉化方法的應用.

例4 如圖2-24所示.已知△ABC中,∠C=90°,D,E分別是BC,AC上的任意一點.求證:AD2+BE2=AB2+DE2.

分析 求證中所述的4條線段分別是4個直角三角形的斜邊,因此考慮從勾股定理入手.

證 AD2=AC2+CD2,BE2=BC2+CE2,所以

AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2

例5 求證:在直角三角形中兩條直角邊上的中線的平方和的4倍等于斜邊平方的5倍.

如圖2-25所示.設直角三角形ABC中,∠C=90°,AM,BN分別是BC,AC邊上的中線.求證:

4(AM2+BN2)=5AB2.

分析 由于AM,BN,AB均可看作某個直角三角形的斜邊,因此,仿例4的方法可從勾股定理入手,但如果我們能將本題看成例4的特殊情況――即M,N分別是所在邊的中點,那么可直接利用例4的結論,使證明過程十分簡潔.

證 連接MN,利用例4的結論,我們有

AM2+BN2=AB2+MN2,

所以 4(AM2+BN2)=4AB2+4MN2. ①

由于M,N是BC,AC的中點,所以

所以 4MN2=AB2. ②

由①,②

4(AM2+BN2)=5AB2.

說明 在證明中,線段MN稱為△ABC的中位線,以后會知道中位線的基本性質(zhì):“MN∥AB且MN=圖2-26所示.MN是△ABC的一條中位線,設△ABC的面積為S.由于M,N分別是所在邊的中點,所以S△ACM=S△BCN,兩邊減去公共部分△CMN后得S△AMN=S△BMN,從而AB必與MN平行.又S△ABM=高相同,而S△ABM=2S△BMN,所以AB=2MN.

初中數(shù)學要怎么學

1、課前預習

預習是學習的第一步,通過預習可以更好地聽老師講課,提高學習效率。學生在上課之前有過預習,可以對新知識有初步的了解,并且找到不明白的問題,從而在課堂上實現(xiàn)針對性地的聽講。

2、課后復習

復習是對已學知識的鞏固和強化,通過復習可以加深對知識的記憶,從而達到鞏固的效果。學生在課后要及時復習,減緩遺忘速度,形成對新知識的深刻印象。

數(shù)學答題技巧

1、配方法

所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

3、換元法

換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

勾股定理數(shù)學知識提綱相關文章

數(shù)學勾股定理知識點

高一數(shù)學勾股定理知識點總結

勾股定理應用中的知識點總結

八年級數(shù)學下冊勾股定理和四邊形的復習提綱

八年級數(shù)學勾股定理知識

八年級數(shù)學勾股定理經(jīng)典例題解析

初二數(shù)學勾股定理教案

中考數(shù)學知識點總結最全提綱

高一數(shù)學公式定理知識點匯編

初中數(shù)學幾何知識點提綱

勾股定理數(shù)學知識提綱

數(shù)學是中考重要科目,想要學好數(shù)學,首先要找到學習的竅門,這樣可以讓我們事半功倍。下面小編給大家分享一些勾股定理數(shù)學知識提綱,希望能夠幫助大家,歡迎閱讀!勾股定理數(shù)學知識提綱勾股定理 直角三角形兩直角邊
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 魯教版七年級上冊數(shù)學提綱
    魯教版七年級上冊數(shù)學提綱

    學好數(shù)學就要提高聽課質(zhì)量要培養(yǎng)會聽課,聽懂課的習慣。另外做好復習提綱也是十分重要的,下面小編給大家分享一些魯教版七年級上冊數(shù)學提綱,希望

  • 九年級上冊數(shù)學復習提綱人教版
    九年級上冊數(shù)學復習提綱人教版

    初中階段的數(shù)學知識內(nèi)容多,知識點也較為繁雜,所以需要學生們學會主動去預習,并且做好復習提綱,下面小編給大家分享一些九年級上冊數(shù)學復習提綱

  • 北師大版八年級數(shù)學下冊復習提綱
    北師大版八年級數(shù)學下冊復習提綱

    數(shù)學是中考的重要科目,想要學好數(shù)學,一定要找對方法。那么你是不是需要一份復習提綱呢,下面小編給大家分享一些北師大版八年級數(shù)學下冊復習提綱

  • 八年級下冊數(shù)學期末提綱
    八年級下冊數(shù)學期末提綱

    初中階段的數(shù)學綜合性已經(jīng)比較強,想要一步登天的提升自己的成績顯然是不可能的,但是我們可以制定提綱去復習,以下是小編給大家整理的八年級下冊

1109600