學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) > 初二數(shù)學(xué)的復(fù)習(xí)方法

初二數(shù)學(xué)的復(fù)習(xí)方法

時(shí)間: 云霞0 分享

初二數(shù)學(xué)的復(fù)習(xí)方法大全

知識(shí)傳遞的方式和途徑對(duì)知識(shí)產(chǎn)生和應(yīng)用的影響愈發(fā)顯著。數(shù)字鴻溝和知識(shí)鴻溝是全球性知識(shí)發(fā)展和應(yīng)用的制約因素。下面是由小編為大家精心整理的初二數(shù)學(xué)的復(fù)習(xí)方法,僅供參考,歡迎大家閱讀本文。

初二數(shù)學(xué)的復(fù)習(xí)方法

初二數(shù)學(xué)的復(fù)習(xí)方法

按部就班

數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一章一章過(guò)關(guān),不要輕易留下自己不明白或者理解不深刻的問(wèn)題。

強(qiáng)調(diào)理解

概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學(xué)一個(gè)定理,嘗試先不看答案,做一次例題,看是否能正確運(yùn)用新定理;若不行,則對(duì)照答案,加深對(duì)定理的理解。

基本訓(xùn)練

學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時(shí)多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。

重視錯(cuò)誤

訂一個(gè)錯(cuò)題本,專門搜集自己的錯(cuò)題,這些往往就是自己的薄弱之處。復(fù)習(xí)時(shí),這個(gè)錯(cuò)題本也就成了寶貴的復(fù)習(xí)資料。

數(shù)學(xué)的學(xué)習(xí)有一個(gè)循序漸進(jìn)的過(guò)程,妄想一步登天是不現(xiàn)實(shí)的。熟記書本內(nèi)容后將書后習(xí)題認(rèn)真寫好,有些同學(xué)可能認(rèn)為書后習(xí)題太簡(jiǎn)單不值得做,這種想法是極不可取的,書后習(xí)題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴(yán)整,公式定理能夠運(yùn)用的恰如其分,以減少考試中無(wú)謂的失分。

平時(shí)的數(shù)學(xué)學(xué)習(xí):

○1課前認(rèn)真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽(tīng)老師講課,通過(guò)預(yù)習(xí),掌握度要達(dá)到百分之八十.帶著預(yù)習(xí)中不明白的問(wèn)題去聽(tīng)老師講課,來(lái)解答這類的問(wèn)題.預(yù)習(xí)還可以使聽(tīng)課的整體效率提高.具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識(shí)點(diǎn),整個(gè)過(guò)程大約持續(xù)15-20分鐘.在時(shí)間允許的情況下,還可以將練習(xí)冊(cè)做完.

○2讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽(tīng)是沒(méi)用的.當(dāng)老師讓同學(xué)去黑板上演算時(shí),自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來(lái),不能不求甚解.否則考試遇到類似的題目就可能不會(huì)做.聽(tīng)老師講課時(shí)一定要全神貫注,要注意細(xì)節(jié)問(wèn)題,否則“千里之堤,毀于蟻穴”.

○3課后及時(shí)復(fù)習(xí).寫完作業(yè)后對(duì)當(dāng)天老師講的內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題.可以根據(jù)自己的需要選擇適合自己的課外書.其課外題內(nèi)容大概就是今天上的課.

○4單元測(cè)驗(yàn)是為了檢測(cè)近期的學(xué)習(xí)情況.其實(shí)分?jǐn)?shù)代表的是你的過(guò)去,關(guān)鍵的是對(duì)于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好.老師經(jīng)常會(huì)在沒(méi)通知的情況下進(jìn)行考試,所以要及時(shí)做到“課后復(fù)習(xí)”.

初中數(shù)學(xué)牢記的三大方法

一、主動(dòng)預(yù)習(xí)

預(yù)習(xí)的目的是主動(dòng)獲取新知識(shí)的過(guò)程,有助于調(diào)動(dòng)學(xué)習(xí)積極主動(dòng)性,新知識(shí)在未講解之前,認(rèn)真閱讀教材,養(yǎng)成主動(dòng)預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識(shí)的重要手段。

因此,要注意培養(yǎng)自學(xué)能力,學(xué)會(huì)看書。如自學(xué)例題時(shí),要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒(méi)有新的解法,解題步驟是怎樣的。抓住這些重要問(wèn)題,動(dòng)腦思考,步步深入,學(xué)會(huì)運(yùn)用已有的知識(shí)去獨(dú)立探究新的知識(shí)。

二、主動(dòng)思考

很多同學(xué)在聽(tīng)課的過(guò)程中,只是簡(jiǎn)簡(jiǎn)單單的聽(tīng),不能主動(dòng)思考,這樣遇到實(shí)際問(wèn)題時(shí),會(huì)無(wú)從下手,不知如何應(yīng)用所學(xué)的知識(shí)去解答問(wèn)題。

主要原因還是聽(tīng)課過(guò)程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動(dòng)去想,不僅能讓我們更加認(rèn)真的聽(tīng)課,也能激發(fā)對(duì)某些知識(shí)的興趣,更有助于學(xué)習(xí)。

靠著老師的引導(dǎo),去思考解題的思路;答案真的不重要;重要的是方法!

三、善于總結(jié)規(guī)律

解答數(shù)學(xué)問(wèn)題總的講是有規(guī)律可循的。在解題時(shí),要注意總結(jié)解題規(guī)律,在解決每一道練習(xí)題后,要注意回顧以下問(wèn)題。

初二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)篇1

整式的除法

1.單項(xiàng)式除法單項(xiàng)式

單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

2.多項(xiàng)式除以單項(xiàng)式

多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

三個(gè)規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

點(diǎn)的坐標(biāo)的性質(zhì)

建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

初二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)篇2

等腰梯形

定義

兩腰相等的梯形叫做等腰梯形(isosceles trapezium )

性質(zhì)

1.等腰梯形的兩條腰相等。

2.等腰梯形在同一底上的兩個(gè)底角相等。

3.等腰梯形的兩條對(duì)角線相等。

4.等腰梯形是軸對(duì)稱圖形,對(duì)稱軸是上下底中點(diǎn)的連線所在直線(過(guò)兩底中點(diǎn)的直線)。

判定

①兩腰相等的梯形是等腰梯形;

②同一底上的兩個(gè)角相等的梯形是等腰梯形;

③對(duì)角線相等的梯形是等腰梯形;

初二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)篇3

分式的分子與分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。

用式子表示為A/B=(A-C)/(B-C);A/B=(A-C)/(B-C)(C不等于0) ,其中A、B、C是整式

注意:

(1)“C是一個(gè)不等于0的整式”是分式基本性質(zhì)的一個(gè)制約條件;

(2)應(yīng)用分式的基本性質(zhì)時(shí),要深刻理解“同”的含義,避免犯只乘分子(或分母)的錯(cuò)誤;

(3)若分式的分子或分母是多項(xiàng)式,運(yùn)用分式的基本性質(zhì)時(shí),要先用括號(hào)把分子或分母括上,再乘或除以同一整式C;

(4)分式的基本性質(zhì)是分式進(jìn)行約分、通分和符號(hào)變化的依據(jù)。

初二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)篇4

定義:根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

步驟:把分式分子分母因式分解,然后約去分子與分母的公因。

注意:

①分式的分子與分母為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。

②分子分母若為多項(xiàng)式,約分時(shí)先對(duì)分子分母進(jìn)行因式分解,再約分。

通過(guò)上面對(duì)數(shù)學(xué)中分式的約分知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容知識(shí)都能很好的掌握,相信同學(xué)們會(huì)學(xué)習(xí)的很好。

初二數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)篇5

(一)運(yùn)用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

(三)因式分解

1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的`積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個(gè)公式叫完全平方公式。

(2)完全平方式的形式和特點(diǎn)

①項(xiàng)數(shù):三項(xiàng)

②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。

(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

(五)分組分解法

我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)??(a+b).

這種利用分組來(lái)分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式.

(六)提公因式法

1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃?,或改變符?hào),直到可確定多項(xiàng)式的公因式.

2.運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于

一次項(xiàng)的系數(shù).

2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

①列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù).

3.將原多項(xiàng)式分解成(x+q)(x+p)的形式.

1997212