學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

初二數(shù)學(xué)必考知識(shí)點(diǎn)歸納

時(shí)間: 舒淇4599 分享

學(xué)數(shù)學(xué)就是在學(xué)一種思維體系,在日常教導(dǎo)孩子的過程中也要注重這一點(diǎn)。下面小編為大家?guī)沓醵?shù)學(xué)必考知識(shí)點(diǎn)歸納,歡迎大家參考閱讀,希望大家喜歡!

初二數(shù)學(xué)必考知識(shí)點(diǎn)歸納

軸對(duì)稱

一、知識(shí)框架:

二、知識(shí)概念:

1.基本概念:

⑴軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形.

⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱.

⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.

2.基本性質(zhì):

⑴對(duì)稱的性質(zhì):

①不管是軸對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.

②對(duì)稱的圖形都全等.

⑵線段垂直平分線的性質(zhì):

①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.

②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

⑶關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)

①點(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為P'(x,y).

②點(diǎn)P(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為P"(x,y).

⑷等腰三角形的性質(zhì):

①等腰三角形兩腰相等.

②等腰三角形兩底角相等(等邊對(duì)等角).

③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條).

⑸等邊三角形的性質(zhì):

①等邊三角形三邊都相等.

②等邊三角形三個(gè)內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線合一.

④等邊三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(3條).

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形.

②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形.

②三個(gè)角都相等的三角形是等邊三角形.

③有一個(gè)角是60°的等腰三角形是等邊三角形.

4.基本方法

⑴做已知直線的垂線:

⑵做已知線段的垂直平分線:

⑶作對(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線.

⑷作已知圖形關(guān)于某直線的對(duì)稱圖形:

⑸在直線上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

初二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)

一、 在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

二、平面直角坐標(biāo)系及有關(guān)概念

1、平面直角坐標(biāo)系

在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

3、點(diǎn)的坐標(biāo)的概念

對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng) 時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

4、不同位置的點(diǎn)的坐標(biāo)的特征

(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一象限:x0

點(diǎn)P(x,y)在第二象限:x0

點(diǎn)P(x,y)在第三象限:x0

點(diǎn)P(x,y)在第四象限:x0

(2)、坐標(biāo)軸上的點(diǎn)的特征

點(diǎn)P(x,y)在x軸上,y=0 ,x為任意實(shí)數(shù)

點(diǎn)P(x,y)在y軸上,x=0 ,y為任意實(shí)數(shù)

點(diǎn)P(x,y)既在x軸上,又在y軸上, x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

(5)、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征

點(diǎn)P與點(diǎn)p關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P(x,-y)

點(diǎn)P與點(diǎn)p關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P(-x,y)

點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對(duì)稱 橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P(-x,-y)

(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

(1)點(diǎn)P(x,y)到x軸的距離等于|y|;

(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;

(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號(hào)x_x+y_y

三、坐標(biāo)變化與圖形變化的規(guī)律:

坐標(biāo)(x,y)的變化

圖形的變化

x a或y a

被橫向或縱向拉長(壓縮)為原來的a倍

x a,y a

放大(縮小)為原來的a倍

x (-1)或y (-1)

關(guān)于y軸或x軸對(duì)稱

x (-1),y (-1)

關(guān)于原點(diǎn)成中心對(duì)稱

x +a或y+ a

沿x軸或y軸平移a個(gè)單位

x +a,y+ a

沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單

初二數(shù)學(xué)考試知識(shí)點(diǎn)

(一)提公因式法

1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃?,或改變符?hào),直到可確定多項(xiàng)式的公因式.

2.運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于

一次項(xiàng)的系數(shù).

2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

①列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù).

3.將原多項(xiàng)式分解成(x+q)(x+p)的形式.

(二)分式的乘除法

1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式.

3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.

4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減.

(三)分?jǐn)?shù)的加減法

1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形.約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.

3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.

4.通分的依據(jù):分式的基本性質(zhì).

5.通分的關(guān)鍵:確定幾個(gè)分式的'公分母.

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分?jǐn)?shù)的通分得到分式的通分:

把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào).

10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化.

12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.

(四)含有字母系數(shù)的一元一次方程

1.含有字母系數(shù)的一元一次方程

引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)

在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零。

初二數(shù)學(xué)必考知識(shí)點(diǎn)歸納相關(guān)文章

八年級(jí)數(shù)學(xué)主要知識(shí)點(diǎn)

八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)梳理總結(jié)2022

八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理

初二數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)整理

初二數(shù)學(xué)必備知識(shí)點(diǎn)人教版

2022初二數(shù)學(xué)知識(shí)點(diǎn)歸納整理

初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初二數(shù)學(xué)知識(shí)點(diǎn)歸納大全

初二數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記

初二數(shù)學(xué)考試知識(shí)點(diǎn)

1565806