八年級數(shù)學必備知識點
打盹會做夢,學習會圓夢。要想提高自身的學習成績,則需要實際行動起來,不能三天打魚,兩天曬網(wǎng),學習如同逆水行舟,不進則退。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有所幫助。
初二上學期數(shù)學知識點歸納
位置與坐標
1、確定位置
在平面內,確定一個物體的位置一般需要兩個數(shù)據(jù)。
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數(shù)軸組成平面直角坐標系。
②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點。
③建立了平面直角坐標系,平面內的點就可以用一組有序實數(shù)對來表示。
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限。
⑤在直角坐標系中,對于平面上任意一點,都有的一個有序實數(shù)對(即點的坐標)與它對應;反過來,對于任意一個有序實數(shù)對,都有平面上的一點與它對應。
3、軸對稱與坐標變化
關于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數(shù)。
八年級上冊數(shù)學知識點
1、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,并且每一個角都等于60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等于60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18、直角三角形斜邊上的中線等于斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關于某條直線對稱的兩個圖形是全等形
八年級上冊數(shù)學知識點梳理
【一次函數(shù)】
20.1一次函數(shù)的概念
1.一般地,解析式形如ykxb(kb是常數(shù),k0)的函數(shù)叫做一次函數(shù);一次函數(shù)的定義域是一切實數(shù)
2.一般地,我們把函數(shù)yc(c為常數(shù))叫做常值函數(shù)
20.2一次函數(shù)的圖像
1.列表、描點、連線
2.一條直線與y軸的交點的縱坐標叫做這條直線在y軸上的截距,簡稱直線的截距
3.一般地,直線ykxb(kb是常數(shù),k0)與y軸的交點坐標是(0,b),直線的截距是b
4.一次函數(shù)ykxb(b≠0)的圖像可以由正比例函數(shù)ykx的圖像平移得到當b>0時,向上平移b個單位,當b<0時,向下平移b的絕對值個單位
5.一元一次不等式與一次函數(shù)之間的關系(看圖)
20.3一次函數(shù)的性質
1.一次函數(shù)ykxb(kb是常數(shù),k?0)具有以下性質:
當k>0時,函數(shù)值y隨自變量x的值增大而增大
當k<0時,函數(shù)值y隨自變量x的值增大而減小
①如圖所示,當k>0,b>0時,直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);②如圖所示,當k>0,b﹥O時,直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限);③如圖所示,當k﹤O,b>0時,直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);
④如圖所示,當k﹤O,b﹤O時,直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限).20.4一次函數(shù)的應用
1.利用一次函數(shù)及圖像解決實際問題
八年級數(shù)學必備知識點相關文章:
八年級數(shù)學必備知識點
上一篇:初二數(shù)學期中知識點
下一篇:初二數(shù)學必備知識點