初二數(shù)學(xué)仁愛版知識點(diǎn)
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些初二數(shù)學(xué)的知識點(diǎn),希望對大家有所幫助。
八年級數(shù)學(xué)知識點(diǎn)
相似、全等三角形
1、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
2、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
3、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
4、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
5、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
6、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似
7、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
8、性質(zhì)定理2相似三角形周長的比等于相似比
9、性質(zhì)定理3相似三角形面積的比等于相似比的平方
10、邊角邊公理有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
11、角邊角公理有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等
12、推論有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
13、邊邊邊公理有三邊對應(yīng)相等的兩個(gè)三角形全等
14、斜邊、直角邊公理有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
15、全等三角形的對應(yīng)邊、對應(yīng)角相等
等腰、直角三角形
1、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等
2、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
3、等腰三角形的頂角平分線、底邊上的中線和高互相重合
4、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
5、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
6、推論1三個(gè)角都相等的三角形是等邊三角形
7、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
8、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
9、直角三角形斜邊上的中線等于斜邊上的一半
八年級數(shù)學(xué)知識點(diǎn)總結(jié)
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
八年級數(shù)學(xué)學(xué)習(xí)方法技巧
一該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。
因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來的,二者是相反方向的變形。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度.時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴(kuò)展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計(jì)算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。
初二數(shù)學(xué)仁愛版知識點(diǎn)相關(guān)文章: