學習啦>學習方法>初中學習方法>初二學習方法>八年級數(shù)學>

初中八年級數(shù)學知識點整理

時間: 躍瀚0 分享

學習知識要善于思考,思考,再思考。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有所幫助。

初二數(shù)學三角形知識點歸納

直角三角形

◆備考兵法

1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).

2.在解決直角三角形的有關問題時,應注意以勾股定理為橋梁建立方程(組)來解決問題,實現(xiàn)幾何問題代數(shù)化.

3.在解決直角三角形的相關問題時,要注意題中是否含有特殊角(30°,45°,60°).若有,則應運用一些相關的特殊性質解題.

4.在解決許多非直角三角形的計算與證明問題時,常常通過作高轉化為直角三角形來解決.

5.折疊問題是新中考熱點之一,在處理折疊問題時,動手操作,認真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.

三角形的重心

已知:△ABC中,D為BC中點,E為AC中點,AD與BE交于O,CO延長線交AB于F。求證:F為AB中點。

證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。

重心的幾條性質:

1.重心和三角形3個頂點組成的3個三角形面積相等。

2.重心到三角形3個頂點距離的平方和最小。

3.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3

4重心到頂點的距離與重心到對邊中點的距離之比為2:1。

5.重心是三角形內到三邊距離之積的點。

如果用塞瓦定理證,則極易證三條中線交于一點。

八年級數(shù)學知識點總結北師大版

函數(shù)及其相關概念

1、變量與常量

在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。

2、函數(shù)解析式

用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數(shù)的三種表示法及其優(yōu)缺點

(1)解析法

兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數(shù)關系的方法叫做圖像法。

4、由函數(shù)解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對應值

(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

初二數(shù)學學習方法技巧

1、配方法

所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

3、換元法

換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數(shù)法

在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

6、構造法

在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

初中八年級數(shù)學知識點整理相關文章

八年級數(shù)學知識點整理歸納

初中八年級上冊數(shù)學知識點總結歸納

初二數(shù)學知識點復習整理

八年級下冊數(shù)學知識點整理

初二數(shù)學知識點整理歸納

八年級上冊數(shù)學知識點整理

八年級數(shù)學知識點總結

初中八年級上冊數(shù)學知識點

初二數(shù)學知識點歸納

初二數(shù)學上冊知識點總結

初中八年級數(shù)學知識點整理

學習知識要善于思考,思考,再思考。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有
推薦度:
點擊下載文檔文檔為doc格式
1095729